Citation:
CHEN Ai-Min, BO Ying-Ying, SHAO Chen-Yi, WANG Jing, HU Jun. Synthesis of Single-Crystalline Cu3B2O6/CuB2O4 and Their Photocatalytic Degradation of Methylene Blue under Visible-Light Irradiation[J]. Acta Physico-Chimica Sinica,
;2014, 30(9): 1713-1719.
doi:
10.3866/PKU.WHXB201407011
-
Single-crystalline Cu3B2O6/CuB2O4 was successfully prepared by a sol-gel method fromcupric nitrate/ cupric acetate and boric acid, using citric acid as a foaming agent. The obtained materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and thermogravimetry-differential thermal analysis (TG-DTA). The photodegradation of methylene blue (MB) solution was used to evaluate the photocatalytic activity of Cu3B2O6/CuB2O4 under visiblelight irradiation (400 nm<λ<1100 nm). The results indicated that both Cu3B2O6 and CuB2O4 displayed od photocatalytic activity. Under visible-light irradiation for 6 h, the photocatalytic activities of CuB2O4 and Cu3B2O6 reached 63.36% and 99.52%, respectively, in MB aqueous solution (50 mg·L-1) containing 1 g·L-1 catalyst. Ultraviolet-visible analysis showed that the width of the midgap state for Cu3B2O6 is 1.78 eV, which is much narrower than that of CuB2O4 (1.95 eV), and the band gap of Cu3B2O6 is narrow (Eg=2.34 eV). These results indicated that electron transitions can occur in both the midgap state and forbidden band for Cu3B2O6; this is why Cu3B2O6 has higher visible-light photocatalytic activity than CuB2O4.
-
Keywords:
-
Sol-gel
, - Copper borate,
- Visible-photocatalysis,
- Methylene blue
-
-
-
-
[1]
(1) Honda, K.; Fujishima, A. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Zhou, G. Q.; Hojamberdiev, M.; Que,W. X.; Liu, P. Ceram. Int. 2013, 39, 9163. doi: 10.1016/j.ceramint.2013.05.017
-
[3]
(3) Wu, Q.; Su, Y. F.; Sun, L.;Wang, M. Y.;Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28 (3), 635. [吴奇, 苏钰丰,孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28 (3), 635.] doi: 10.3866/PKU.WHXB201112231
-
[4]
(4) Chen, G. D.; Sun, M.;Wei, Q.; Zhang, Y. F.; Zhu, B. C.; Du, B. J. Hazard. Mater. 2013, 244 -245, 86.
-
[5]
(5) Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.;Wang, R. X.; Xu, A.W. J. Mater. Chem. A 2014, 2, 4429. doi: 10.1039/c3ta14484d
-
[6]
(6) Clark, J. H.; Dyer, M. S.; Palgrave, R. G.; Ireland, C. P.; Darwent, J. R.; Claridge, J. B.; Rosseinsky, M. J. J. Am. Chem. Soc. 2011, 133, 1016. doi: 10.1021/ja1090832
-
[7]
(7) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J.W. J.; Byrne, J. A.; O′Shea, K.; Entezari, M. H.; Dionysiou, D. D. Appl. Catal. BEnviron. 2012, 125, 331. doi: 10.1016/j.apcatb.2012.05.036
-
[8]
(8) Peng, Y.; Yan, M.; Chen, Q. G.; Fan, C. M.; Zhou, H. Y.; Xu, A. W. J. Mater. Chem. A 2014, 2, 8517. doi: 10.1039/c4ta00274a
-
[9]
(9) Ji, P. L.;Wang, J. G.; Zhu, X. L.; Kong, X. Z. Acta Phys. -Chim. Sin. 2012, 28 (9), 2155. [姬平利, 王金刚, 朱晓丽, 孔祥正. 物理化学学报, 2012, 28 (9), 2155.] doi: 10.3866/PKU.WHXB201206262
-
[10]
(10) Fan, C. M.; Peng, Y.; Zhu, Q.; Lin, L.;Wang, R. X.; Xu, A.W. J. Phys. Chem. C 2013, 117, 24157. doi: 10.1021/jp407296f
-
[11]
(11) Cheney, C. P.; Vilmercati, P.; Martin, E.W.; Chiodi, M.; Gavioli, L.; Regmi, M.; Eres, G.; Callcott, T. A.;Weitering, H. H.; Mannella, N. Phys. Rev. Lett. 2014, 112, 036404. doi: 10.1103/PhysRevLett.112.036404
-
[12]
(12) Chen, X. B.; Liu, L.; Peter, Y. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448
-
[13]
(13) Kisch, H.; Macyk,W. ChemPhysChem 2002, 3, 399. doi: 10.1002/1439-7641(20020517)3:5<399::AID-CPHC399>3.0.CO;2-H
-
[14]
(14) Teh, C. M.; Mohamed, A. R. J. Alloy. Compd. 2011, 509, 1648. doi: 10.1016/j.jallcom.2010.10.181
-
[15]
(15) Zhang, Y.; Deng, B.; Zhang, T. R.; Gao, D. M.; Xu, A.W. J. Phys. Chem. C 2010, 114, 5073. doi: 10.1021/jp9110037
-
[16]
(16) Koriche, N.; Bouguelia, A.; Aider, A.; Trari, M. Int. J. Hydrog. Energy 2005, 30 (7), 693. doi: 10.1016/j.ijhydene.2004.06.011
-
[17]
(17) Benreguia, N.; Omeiri, S.; Bellal, B.; Trari, M. J. Hazard. Mater. 2011, 192, 1395. doi: 10.1016/j.jhazmat.2011.06.049
-
[18]
(18) Bassaid, S.; Chaib, M.; Omeiri, S.; Bouguelia, A.; Trari, M. J. Photochem. Photobiol. A 2009, 201 , 62.
-
[19]
(19) Ni, Z. M.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34 (3), 503. [倪哲明, 薛继龙. 高等学校化学学报, 2013, 34 (3), 503.]
-
[20]
(20) Liu, J. K.;Wen, S. H.; Zou, X. X.; Zuo, F.; Beran, G. J. O.; Feng, P. Y. J. Mater. Chem. A 2013, 1, 1553-1556. doi: 10.1039/c2ta00522k
-
[21]
(21) Petrakovskii, G. A.; Bezmaternykh, L. N.; Bayukov, O. A.; Popov, M. A.; Schefer, J.; Neidermayer, C.; Aleshkevich, P.; Szymczak, R. Phys. Solid State 2007, 49 (7), 1315. doi: 10.1134/S1063783407070207
-
[22]
(22) Udod, L. V.; Sablina, K. A.; Pankrats, A. I.; Vorotynov, A. M.; Velikanov, D. A.; Petrakovskii, G. A.; Bovina, A. F. Inorg. Mater. 2003, 39 (11), 1172. doi: 10.1023/A:1027353610177
-
[23]
(23) Pan, S.;Watkins, B.; Smit, J. P.; Marvel, M. R.; Saratovsky, I.; Poeppelmeier, K. R. Inorg. Chem. 2007, 46 (10), 3851. doi: 10.1021/ic0614824
-
[24]
(24) Kuratieva, N. V.; Banki, M.; Tsirlin, A. A.; Eckert, J.; Ehrenberg, H.; Mikhailova, D. Inorg. Chem. 2013, 52, 13974. doi: 10.1021/ic4015724
-
[25]
(25) Zheng, Y. H.;Wang, Z. C.; Tian, Y. M.; Qu, Y. N.; Li, S. L.; An, D. M.; Chen, X.; Guan, S. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009, 349, 156. doi: 10.1016/j.colsurfa.2009.08.012
-
[26]
(26) Miller, B. P.; Kotvis, P. V.; Furlong, O. J.; Tysoe,W. T. Tribol. Lett. 2013, 49, 21. doi: 10.1007/s11249-012-0038-1
-
[27]
(27) Kang, Y. L.;Wang, G. Y.; Liu, Z. Y.;Wang, Y. J. Chin. J. Inorg. Chem. 2012, 28 (7), 1365. [康园丽, 王桂赟, 刘宗园, 王延吉. 无机化学学报, 2012, 28 (7), 1365.]
-
[28]
(28) Zhao,W. R.;Wang, Y.; Yang, Y.; Tang, J.; Yang, Y. A. Appl. Catal. B-Environ. 2012, 115, 90.
-
[29]
(29) Pisarev, R. V.; Kalashnikova, A. M.; Schops, O.; Bezmaternykh, L. N. Phys. Rev. B 2011, 84, 075160. doi: 10.1103/PhysRevB.84.075160
-
[30]
(30) Markovin, P. A.; Kalashnikova, A. M.; Pisarev, R. V.; Rasing, T. Jetp. Lett. 2007, 86 (11), 712.
-
[31]
(31) Moskvin, A. S.; Pisarev, R. V. Low Temp. Phys. 2010, 36 (6), 613.
-
[1]
-
-
-
[1]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[4]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[5]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[6]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[7]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[8]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[9]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[12]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[13]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[14]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[15]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[16]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[20]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[1]
Metrics
- PDF Downloads(563)
- Abstract views(606)
- HTML views(11)