Citation: CHEN Ai-Min, BO Ying-Ying, SHAO Chen-Yi, WANG Jing, HU Jun. Synthesis of Single-Crystalline Cu3B2O6/CuB2O4 and Their Photocatalytic Degradation of Methylene Blue under Visible-Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1713-1719. doi: 10.3866/PKU.WHXB201407011 shu

Synthesis of Single-Crystalline Cu3B2O6/CuB2O4 and Their Photocatalytic Degradation of Methylene Blue under Visible-Light Irradiation

  • Received Date: 23 April 2014
    Available Online: 1 July 2014

    Fund Project:

  • Single-crystalline Cu3B2O6/CuB2O4 was successfully prepared by a sol-gel method fromcupric nitrate/ cupric acetate and boric acid, using citric acid as a foaming agent. The obtained materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and thermogravimetry-differential thermal analysis (TG-DTA). The photodegradation of methylene blue (MB) solution was used to evaluate the photocatalytic activity of Cu3B2O6/CuB2O4 under visiblelight irradiation (400 nm<λ<1100 nm). The results indicated that both Cu3B2O6 and CuB2O4 displayed od photocatalytic activity. Under visible-light irradiation for 6 h, the photocatalytic activities of CuB2O4 and Cu3B2O6 reached 63.36% and 99.52%, respectively, in MB aqueous solution (50 mg·L-1) containing 1 g·L-1 catalyst. Ultraviolet-visible analysis showed that the width of the midgap state for Cu3B2O6 is 1.78 eV, which is much narrower than that of CuB2O4 (1.95 eV), and the band gap of Cu3B2O6 is narrow (Eg=2.34 eV). These results indicated that electron transitions can occur in both the midgap state and forbidden band for Cu3B2O6; this is why Cu3B2O6 has higher visible-light photocatalytic activity than CuB2O4.

  • 加载中
    1. [1]

      (1) Honda, K.; Fujishima, A. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Zhou, G. Q.; Hojamberdiev, M.; Que,W. X.; Liu, P. Ceram. Int. 2013, 39, 9163. doi: 10.1016/j.ceramint.2013.05.017

    3. [3]

      (3) Wu, Q.; Su, Y. F.; Sun, L.;Wang, M. Y.;Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28 (3), 635. [吴奇, 苏钰丰,孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28 (3), 635.] doi: 10.3866/PKU.WHXB201112231

    4. [4]

      (4) Chen, G. D.; Sun, M.;Wei, Q.; Zhang, Y. F.; Zhu, B. C.; Du, B. J. Hazard. Mater. 2013, 244 -245, 86.

    5. [5]

      (5) Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.;Wang, R. X.; Xu, A.W. J. Mater. Chem. A 2014, 2, 4429. doi: 10.1039/c3ta14484d

    6. [6]

      (6) Clark, J. H.; Dyer, M. S.; Palgrave, R. G.; Ireland, C. P.; Darwent, J. R.; Claridge, J. B.; Rosseinsky, M. J. J. Am. Chem. Soc. 2011, 133, 1016. doi: 10.1021/ja1090832

    7. [7]

      (7) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J.W. J.; Byrne, J. A.; O′Shea, K.; Entezari, M. H.; Dionysiou, D. D. Appl. Catal. BEnviron. 2012, 125, 331. doi: 10.1016/j.apcatb.2012.05.036

    8. [8]

      (8) Peng, Y.; Yan, M.; Chen, Q. G.; Fan, C. M.; Zhou, H. Y.; Xu, A. W. J. Mater. Chem. A 2014, 2, 8517. doi: 10.1039/c4ta00274a

    9. [9]

      (9) Ji, P. L.;Wang, J. G.; Zhu, X. L.; Kong, X. Z. Acta Phys. -Chim. Sin. 2012, 28 (9), 2155. [姬平利, 王金刚, 朱晓丽, 孔祥正. 物理化学学报, 2012, 28 (9), 2155.] doi: 10.3866/PKU.WHXB201206262

    10. [10]

      (10) Fan, C. M.; Peng, Y.; Zhu, Q.; Lin, L.;Wang, R. X.; Xu, A.W. J. Phys. Chem. C 2013, 117, 24157. doi: 10.1021/jp407296f

    11. [11]

      (11) Cheney, C. P.; Vilmercati, P.; Martin, E.W.; Chiodi, M.; Gavioli, L.; Regmi, M.; Eres, G.; Callcott, T. A.;Weitering, H. H.; Mannella, N. Phys. Rev. Lett. 2014, 112, 036404. doi: 10.1103/PhysRevLett.112.036404

    12. [12]

      (12) Chen, X. B.; Liu, L.; Peter, Y. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448

    13. [13]

      (13) Kisch, H.; Macyk,W. ChemPhysChem 2002, 3, 399. doi: 10.1002/1439-7641(20020517)3:5<399::AID-CPHC399>3.0.CO;2-H

    14. [14]

      (14) Teh, C. M.; Mohamed, A. R. J. Alloy. Compd. 2011, 509, 1648. doi: 10.1016/j.jallcom.2010.10.181

    15. [15]

      (15) Zhang, Y.; Deng, B.; Zhang, T. R.; Gao, D. M.; Xu, A.W. J. Phys. Chem. C 2010, 114, 5073. doi: 10.1021/jp9110037

    16. [16]

      (16) Koriche, N.; Bouguelia, A.; Aider, A.; Trari, M. Int. J. Hydrog. Energy 2005, 30 (7), 693. doi: 10.1016/j.ijhydene.2004.06.011

    17. [17]

      (17) Benreguia, N.; Omeiri, S.; Bellal, B.; Trari, M. J. Hazard. Mater. 2011, 192, 1395. doi: 10.1016/j.jhazmat.2011.06.049

    18. [18]

      (18) Bassaid, S.; Chaib, M.; Omeiri, S.; Bouguelia, A.; Trari, M. J. Photochem. Photobiol. A 2009, 201 , 62.

    19. [19]

      (19) Ni, Z. M.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34 (3), 503. [倪哲明, 薛继龙. 高等学校化学学报, 2013, 34 (3), 503.]

    20. [20]

      (20) Liu, J. K.;Wen, S. H.; Zou, X. X.; Zuo, F.; Beran, G. J. O.; Feng, P. Y. J. Mater. Chem. A 2013, 1, 1553-1556. doi: 10.1039/c2ta00522k

    21. [21]

      (21) Petrakovskii, G. A.; Bezmaternykh, L. N.; Bayukov, O. A.; Popov, M. A.; Schefer, J.; Neidermayer, C.; Aleshkevich, P.; Szymczak, R. Phys. Solid State 2007, 49 (7), 1315. doi: 10.1134/S1063783407070207

    22. [22]

      (22) Udod, L. V.; Sablina, K. A.; Pankrats, A. I.; Vorotynov, A. M.; Velikanov, D. A.; Petrakovskii, G. A.; Bovina, A. F. Inorg. Mater. 2003, 39 (11), 1172. doi: 10.1023/A:1027353610177

    23. [23]

      (23) Pan, S.;Watkins, B.; Smit, J. P.; Marvel, M. R.; Saratovsky, I.; Poeppelmeier, K. R. Inorg. Chem. 2007, 46 (10), 3851. doi: 10.1021/ic0614824

    24. [24]

      (24) Kuratieva, N. V.; Banki, M.; Tsirlin, A. A.; Eckert, J.; Ehrenberg, H.; Mikhailova, D. Inorg. Chem. 2013, 52, 13974. doi: 10.1021/ic4015724

    25. [25]

      (25) Zheng, Y. H.;Wang, Z. C.; Tian, Y. M.; Qu, Y. N.; Li, S. L.; An, D. M.; Chen, X.; Guan, S. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009, 349, 156. doi: 10.1016/j.colsurfa.2009.08.012

    26. [26]

      (26) Miller, B. P.; Kotvis, P. V.; Furlong, O. J.; Tysoe,W. T. Tribol. Lett. 2013, 49, 21. doi: 10.1007/s11249-012-0038-1

    27. [27]

      (27) Kang, Y. L.;Wang, G. Y.; Liu, Z. Y.;Wang, Y. J. Chin. J. Inorg. Chem. 2012, 28 (7), 1365. [康园丽, 王桂赟, 刘宗园, 王延吉. 无机化学学报, 2012, 28 (7), 1365.]

    28. [28]

      (28) Zhao,W. R.;Wang, Y.; Yang, Y.; Tang, J.; Yang, Y. A. Appl. Catal. B-Environ. 2012, 115, 90.

    29. [29]

      (29) Pisarev, R. V.; Kalashnikova, A. M.; Schops, O.; Bezmaternykh, L. N. Phys. Rev. B 2011, 84, 075160. doi: 10.1103/PhysRevB.84.075160

    30. [30]

      (30) Markovin, P. A.; Kalashnikova, A. M.; Pisarev, R. V.; Rasing, T. Jetp. Lett. 2007, 86 (11), 712.

    31. [31]

      (31) Moskvin, A. S.; Pisarev, R. V. Low Temp. Phys. 2010, 36 (6), 613.


  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(563)
  • Abstract views(663)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return