Citation: WANG Li-Guo, ZHANG Xiao-Dan, WANG Feng-You, WANG Ning, JIANG Yuan-Jian, HAO Qiu-Yan, XU Sheng-Zhi, WEI Chang-Chun, ZHAO Ying. Influence of Different Pyramidal Structural Morphologies of Crystalline Silicon Wafers for Surface Passivation and Heterojunction Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1758-1763. doi: 10.3866/PKU.WHXB201406301
-
Silicon heterojunction (SHJ) solar cells consisting of a hydrogenated amorphous silicon (a-Si:H) film deposited on a crystalline silicon wafer have attracted considerable attention from the photovoltaic industry, because of their high efficiencies, high stabilities, low cost, and low-temperature fabrication. Texturing of silicon surfaces is an effective method for improving the efficiency of silicon solar cells. In this work, textured silicon substrates consisting of three different pyramidal structures were obtained using tetramethylammonium hydroxide (TMAH) solution, and used to fabricate SHJ solar cells. We investigated the influence of different pyramidal structural morphologies on the optical properties and electronic performances, to identify the optimum structure for SHJ solar cells. We obtained a standard silicon substrate with four-sided pyramidal structures using 2% (w) TMAH and 10% (w) isopropyl alcohol (IPA). In comparison with other pyramidal structures, the standard four-sided pyramidal-structured silicon substrate had the lowest reflectance, leading to an increased short-circuit current density (Jsc), and its morphology is suitable for surface passivation and SHJ solar cells.
-
-
[1]
(1) Baker-Finch, S. C.; McIntosh, K. R. Prog. Photovoltaics Res. Appl. 2011, 19, 406. doi: 10.1002/pip.1050
-
[2]
(2) Terheiden, B.; Fath, P. Highly Efficient Double Side Mechanically Textured Novel Silicon Solar Cell Concepts, In Photovoltaic Energy Conversion; Proceedings of 3rdWorld Conference on IEEE, Osaka, Japan, May 11-18, 2003; pp 1443-1446.
-
[3]
(3) Marrero, N.; nzález-Díaz, B.; Guerrero-Lemus, R.; Borchert, D. Sol. Energy Mater. Sol. Cells 2007, 91, 1943. doi: 10.1016/j.solmat.2007.08.001
-
[4]
(4) Gan padhyay, U.; Kim, K.; Dhungel, S.; Manna, U.; Basu, P.; Banerjee, M.; Saha, H.; Yi, J. Sol. Energy Mater. Sol. Cells 2006, 90, 3557. doi: 10.1016/j.solmat.2006.06.044
-
[5]
(5) Welcome to PV-Tech. http://www.pv-tech.org/news/back contact_hit_solar_cell _from_panasonic_pushes_efficiency_record_to_25.6 (accessed May 27, 2014)
-
[6]
(6) Angermann, H.; Rappich, J. R.; Klimm, C. Cent. Eur. J. Phys. 2009, 7, 363. doi: 10.2478/s11534-009-0055-3
-
[7]
(7) Angermann, H.; Henrion,W.; Rebien, M.; Röseler, A. Sol. Energy Mater. Sol. Cells 2004, 83, 331. doi: 10.1016/j.solmat.2004.01.031
-
[8]
(8) Song, Y.; Park, M.; Guliants, E.; Anderson,W. Sol. Energy Mater. Sol. Cells 2000, 64, 225. doi: 10.1016/S0927-0248(00)00222-1
-
[9]
(9) Mueller, T.;Wong, J.; Aberle, A. G. Energy Procedia 2012, 15, 97. doi: 10.1016/j.egypro.2012.02.012
-
[10]
(10) Schüttauf, J.W. A.; DerWerf, C. H. M. V.; Van Sark,W. G. J. H. M.; Rath, J. K.; Schropp, R. E. I. Thin Solid Films 2011, 519, 4476. doi: 10.1016/j.tsf.2011.01.319
-
[11]
(11) Sridharan, S.; Bhat, N.; Bhat, K. Appl. Phys. Lett. 2013, 102, 021604. doi: 10.1063/1.4776733
-
[12]
(12) Rosa, M.; Allegrezza, M.; Canino, M.; Summonte, C.; Desalvo, A. Sol. Energy Mater. Sol. Cells 2011, 95, 2987.
-
[13]
(13) Kang, M. G.; Tark, S.; Lee, J. C.; Son, C. S.; Kim, D. J. Cryst. Growth 2011, 326, 14. doi: 10.1016/j.jcrysgro.2011.01.042
-
[14]
(14) Montesdeoca-Santana, A.; Jiménez-Rodríguez, E.; nzález-Díaz, B.; Borchert, D.; Guerrero-Lemus, R. Prog. Photovoltaics Res. Appl. 2012, 20, 191. doi: 10.1002/pip.1117
-
[15]
(15) Pei, J.; Hao, Y. Z.; Sun, B.; Li, Y. P.; Fan, L. X.; Sun, S.;Wang, S. X. Acta Phys. -Chim. Sin. 2014, 30, 397. [裴娟, 郝彦忠, 孙宝, 李英品, 范龙雪, 孙硕, 王尚鑫. 物理化学学报, 2014, 30, 397.] doi: 10.3866/PKU.WHXB201401202
-
[16]
(16) Edwards, M.; Bowden, S.; Das, U.; Burrows, M. Sol. Energy Mater. Sol. Cells 2008, 92, 1373. doi: 10.1016/j.solmat.2008.05.011
-
[17]
(17) Fesquet, L.; Olibet, S.; Damon-Lacoste, J.; DeWolf, S.; Hessler-Wyser, A.; Monachon, C.; Ballif, C. Modification of Textured SiliconWafer Surface Morphology for Fabrication of Heterojunction Solar Cell with Open Circuit Voltage over 700 MV, Photovoltaic Specialists Conference (PVSC), 34th IEEE, Philadelphia, Pennsylvania, USA, June 7-12, 2009; pp 000754-000758.
-
[18]
(18) Tabata, O.; Asahi, R.; Funabashi, H.; Shimaoka, K.; Sugiyama, S. Sens. Actuators A 1992, 34, 51. doi: 10.1016/0924-4247(92)80139-T
-
[19]
(19) Sundaram, K. B.; Vijayakumar, A.; Subramanian, G. Microelectron. Eng. 2005, 77, 230. doi: 10.1016/j.mee.2004.11.004
-
[20]
(20) Biswas, K.; Kal, S. Microelectron. J. 2006, 37, 519.
-
[21]
(21) You, J. S.; Kim, D.; Huh, J. Y.; Park, H. J.; Pak, J. J.; Kang, C. S. Sol. Energy Mater. Sol. Cells 2001, 66, 37. doi: 10.1016/S0927-0248(00)00156-2
-
[22]
(22) Kim, H.; Park, S.; Kang, B.; Kim, S.; Tark, S. J.; Kim, D.; Dahiwale, S. Appl. Surf. Sci. 2013, 284, 133 doi: 10.1016/j.apsusc.2013.07.051
-
[23]
(23) Iencinella, D.; Centurioni, E.; Rizzoli, R.; Zignani, F. Sol. Energy Mater. Sol. Cells 2005, 87, 725 doi: 10.1016/j.solmat.2004.09.020
-
[24]
(24) Zhao, Z. Y.; Zhang, X. D.;Wang, F. Y.; Jiang, Y. J.; Du, J.; Gao, H. B.; Zhao, Y.; Liu, C. C. Acta Phys. Sin. 2014, 63, 136802. [赵振越, 张晓丹, 王奉友, 姜元建, 杜建, 高海波, 赵颖, 刘彩池. 物理学报, 2014, 63, 136802.]
-
[25]
(25) Bullis,W. M.; Huff, H. R. J. Electrochem. Soc. 1996, 143, 1399. doi: 10.1149/1.1836650
-
[26]
(26) Angermann, H.; Conrad, E.; Korte, L.; Rappich, J.; Schulze, T. F.; Schmidt, M. Mater. Sci. Eng. B 2009, 159 -160, 219.
-
[27]
(27) Das, U.; Burrows, M.; Lu, M.; Bowden, S.; Birkmire, R. Appl. Phys. Lett. 2008, 92, 063504. doi: 10.1063/1.2857465
-
[28]
(28) Olibet, S.; Monachon, C.; Damon-Lacoste, J.; Ballif, C. Method for Limiting Epitaxial Growth in a Photoelectric Device with Heterojunctions and Photoelectric Device. US Pat. Appl. 20110174371A1, 2008-09-01.
-
[29]
(29) Wang, H. P.; Lin, T. Y.; Hsu, C.W.; Tsai, M. L.; Huang, C. H.; Wei,W. R.; Huang, M. Y.; Chien, Y. J.; Yang, P. C.; Liu, C.W. ACS Nano 2013, 7, 9325. doi: 10.1021/nn404015y
-
[30]
(30) Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J. Appl. Surf. Sci. 2008, 254, 3615. doi: 10.1016/j.apsusc.2007.10.099
-
[31]
(31) Zhang, Y.; Zhou, Y.; Jiang, Z.; Liu, F.; Zhu, M. Phys. Status Solidi C 2010, 7, 1025.
-
[32]
(32) Angermann, H.; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M.; Hübener, K.; Hauschild, J. Thin Solid Films 2008, 516, 6775. doi: 10.1016/j.tsf.2007.12.033
-
[1]
-
-
[1]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[2]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[3]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[4]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[5]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[6]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[7]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[8]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[9]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[10]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[11]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[13]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[14]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[15]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[16]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[17]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[18]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[19]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[20]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[1]
Metrics
- PDF Downloads(546)
- Abstract views(749)
- HTML views(34)