Citation: LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1616-1624. doi: 10.3866/PKU.WHXB201406182 shu

Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes

  • Received Date: 30 April 2014
    Available Online: 18 June 2014

    Fund Project:

  • Ab initio calculations have been performed for a group of 59 aromatic compounds at the HF/6-31G* level of theory. Electrostatic potentials (ESPs) and the statistically based structural descriptors derived from ESPs on the molecular surface have been obtained. The linear relationships between the adsorption equilibrium constants of organic contaminants by carbon nanotubes and the theoretical descriptors have been established by multiple linear regression. It is shown that the quantities derived from electrostatic potentials, Vmin, σ+2 and ΣVind+ together with the molecular surface area (S) and the energy level of lowest occupied molecular orbital (εLUMO) can be used to express the quantitative structure-property relationship (QSPR) of this sample set. All of the descriptors introduced in the QSPR models have definite physical meanings and their reasonability can be explained in terms of intermolecular interactions between the aromatic pollutants and carbon nanotubes or water. The stabilities and predictive powers of the models have been validated by "leave-one-out" and Monte Carlo cross-validation methods. Three nonlinear modeling techniques, namely supported vector machine (SVM), least-square supported vector machine (LSSVM), as well as Gaussian process (GP), have also been used to construct the predictive models. Though the SVM and LSSVM models exhibit strong fitting abilities, their predictive powers are inferior to the other models tested. The GP model yields the best fit and predictive ability among all of the models. Its advantage over the linear model, however, is not as remarkable as expected, which means that the relationship between the molecular structure and the adsorption property for the present system is primarily linear.

  • 加载中
    1. [1]

      (1) Popov, V. N. Mater. Sci. Eng. R-Rep. 2004, 43, 61. doi: 10.1016/j.mser.2003.10.001

    2. [2]

      (2) Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Prog. Polym. Sci. 2010, 35, 357. doi: 10.1016/j.progpolymsci.2009.09.003

    3. [3]

      (3) Upadhyayula, V. K. K.; Deng, S.; Mitchell, M. C.; Smith, G. B. Sci. Total Environ. 2009, 408, 1. doi: 10.1016/j.scitotenv.2009.09.027

    4. [4]

      (4) Baek, Y.; Kim, C.; Seo, D. K.; Kim, T.; Lee, J. S.; Kim, Y. H.; Ahn, K. H.; Bae, S. S.; Lee, S. C.; Lim, J.; Lee, K.; Yoon, J. J. Membr. Sci. 2014, 460, 171. doi: 10.1016/j.emsci.2014.02.042

    5. [5]

      (5) Deng, S. G.; Upadhyayula, V. K. K.; Smith, G. B.; Mitchell, M. C. IEEE Sens. J. 2008, 8, 954. doi: 10.1109/JSEN.2008.923929

    6. [6]

      (6) Mauter, M. S.; Elimelech, M. Environ. Sci. Technol. 2008, 42, 5843. doi: 10.1021/es8006904

    7. [7]

      (7) Ye, C.; ng, Q. M.; Lu, F. P.; Liang, J. Acta Phys. -Chim. Sin. 2007, 23, 1321. [叶超, 巩前明, 卢方平, 梁吉. 物理化学学报, 2007, 23, 1321.] doi: 10.1016/S1872-1508(07)60066-7

    8. [8]

      (8) Kah, M.; Zhang, X.; Jonker, M. T. O.; Hofmann, T. Environ. Sci. Technol. 2011, 45, 6011.(9) Zeng, X. L.; Zhang, X. L.;Wang, Y. Chemosphere 2013, 91, 229. doi: 10.1016/j.chemosphere.2012.12.060

    9. [9]

      (10) Ghasemi, J.; Saadi, S. Anal. Chim. Acta 2007, 2, 99.(11) Lu, C. H.;Wang, Y.; Yin, C. S.; Guo,W. M.; Hu, X. F. Chemosphere 2006, 63, 1384. doi: 10.1016/j.chemosphere.2005.09.052

    10. [10]

      (12) Feng, C. J.; Mu, L. L.; Yang,W. H.; Cai, K. Y. Acta Chim. Sin. 2008, 66, 2093. [冯长君, 沐来龙, 杨伟华, 蔡可迎. 化学学报, 2008, 66, 2093.](13) Xia, X. R.; Nancy, A.; Monteiro, R.; Riviere, J. E. Nat. Nanotechnol. 2010, 5, 671. doi: 10.1038/nnano.2010.164

    11. [11]

      (14) Apul, O. G.;Wang, Q, L.; Shao, T.; Rieck J. R.; Karanfil, T. Environ. Sci. Technol. 2013, 47, 2295.(15) Wang, Q. L.; Apul, O. G.; Xuan, P. F.; Luo, F.; Karanfil, T. RSC Adv. 2013, 3, 23924. doi: 10.1039/c3ra43599g

    12. [12]

      (16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.(17) STATISTICA forWindows, Version 5.5; Statsoft Inc.: Tulsa, OK, 1999.(18) Zhou, P.; Tian, F. F.; Lv, F. L.; Shang, Z. C. J. Chromatogr. A 2009, 1216, 3107. doi: 10.1016/j.chroma.2009.01.086

    13. [13]

      (19) Pwealta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O′Connor, C. J.; Politzer, P. Nano Lett. 2003, 3, 21. doi: 10.1021/nl020222q

    14. [14]

      (20) Murray, J. S.; Brinck, T.; Lane, P.; Paulsen, K.; Politzer, P. J. Mol. Struct. -Theochem 1994, 307, 55. doi: 10.1016/0166-1280(94)80117-7

    15. [15]

      (21) Sang, P.; Zou, J.W.; Zhou, P.; Xu, L. Chemosphere 2011, 83, 1045. doi: 10.1016/j.chemosphere.2011.01.063

    16. [16]

      (22) Zou, J.W.; Zhao,W. N.; Shang, Z. C.; Huang, M. L.; Guo, M.; Yu, Q. S. J. Phys. Chem. A 2002, 106, 11550. doi: 10.1021/jp025984o

    17. [17]

      (23) Xu, H. Y.; Zou, J.W.; Jiang, Y. J.; Hu, G. X.; Yu, Q. S. J. Chromatog. A 2008, 1198 -1199, 202.(24) Tropsha, A.; lbraikh, A. Handbook of Chemoinformatics Al rithms; CRC Press: Boca Raton, FL, 2010; pp 213-233.(25) Manchester, J.; CzermiDski, R.J. Chem. Inf. Model. 2008, 48, 1167. doi: 10.1021/ci800009u

    18. [18]

      (26) Vapnik, V. N. The Nature of Statistical Learning Theory, 2nd ed.; Springer-Verlag: New York, 1999; pp 138-146.(27) Obrezanova, O.; Csányi, G.; la, J. M. R.; Segall, M. D. J. Chem. Inf. Model. 2007, 47, 1847. doi: 10.1021/ci7000633

    19. [19]

      (28) Schroeter, T. S.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelzle, D.; Ganzer, U.; Heinrich, N.; Müller, K. R. Med. Chem . Res. 2007, 2, 1265.(29) Zhou, P.; Chen, X.;Wu, Y. Q.; Shang, Z. C. Amino Acid 2010,  38, 199. doi: 10.1007/s00726-008-0228-1

    20. [20]

      (30) Ren, Y. R.; Chen, S. C.; Zou, X. C.; Tian, F. F.; Zhou, P. Scientia Sinica Chimica 2012, 42, 1179. [任彦荣, 陈绍成, 邹晓川, 田菲菲, 周鹏. 中国科学: 化学, 2012, 42, 1179.]

    21. [21]

      (31) Sang, P.; Zou, J.W.; Dai, D. M.; Jiang, Y. J. Chemometrics Intell. Lab. Syst. 2013, 127, 166.

    22. [22]

      (32) Sang, P.; Zou, J.W.; Yu, Y. L.; Huang, M. L. Chemometrics Intell. Lab. Syst. 2012, 112, 8.


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    12. [12]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(633)
  • Abstract views(764)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return