Citation: LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1650-1658. doi: 10.3866/PKU.WHXB201406181 shu

Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries

  • Received Date: 27 March 2014
    Available Online: 18 June 2014

    Fund Project:

  • Fe3O4/graphene composites with a conductive, porous three-dimensional (3D) graphene network were synthesized through a facile method. In the preparation process, Fe(OH)3 colloid was formed in situ by adding FeCl3 solution to a boiling graphene oxide ( ) suspension, with Fe(OH)3/ precipitated because of the electrostatic interaction between the two components. The precipitate was separated and added to a second suspension to achieve additional encapsulation. This self-assembled Fe(OH)3/ precursor was then hydrothermally and heat treated, resulting in the formation of Fe3O4/graphene composites. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy results revealed that the Fe3O4/graphene composites possess a favorable 3D porous graphene network embedding 50- to 100-nm-sized Fe3O4 nanoparticles. The Fe3O4/graphene composites exhibit od electrochemical performance as an anode material for Li-ion batteries. The electrode composed of the Fe3O4/graphene composite delivered a capacity of 1390 mAh·g-1 for the first lithiation and retained a capacity of 819 mAh·g-1 after 50 cycles. The electrodes also exhibited od rate capability. The present results demonstrate that the electrochemical performance of the Fe3O4/graphene composite is highly sensitive to its preparation procedure and to the resulting nanostructure. Each of the four preparation procedures was experimentally shown to be important for achieving the final nanostructure and od electrochemical performance. A formation mechanism for the Fe3O4/graphene composite is also proposed.

  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644

    2. [2]

      (2) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a

    3. [3]

      (3) odenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z

    4. [4]

      (4) Gao, B.; Sinha, S.; Fleming, L.; Zhou, O. Adv. Mater. 2001, 13, 816. doi: 10.1002/1521-4095(200106)13:11<816::AIDADMA816>3.0.CO;2-P

    5. [5]

      (5) Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. doi: 10.1021/ja0345524

    6. [6]

      (6) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. doi: 10.1038/35035045

    7. [7]

      (7) Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115. doi: 10.1039/b919877f

    8. [8]

      (8) Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Adv. Mater. 2010, 22, E170.

    9. [9]

      (9) Ji, L.W.; Lin, Z.; Alcoutlabi, M.; Zhang, X.W. Energy Environ. Sci. 2011, 4, 2683.

    10. [10]

      (10) Zhang, L. S.; Jiang, L. Y.; Yan, H. J.;Wang,W. D.;Wang,W.; Song,W. G.; Guo, Y. G.;Wan, L. J. J. Mater. Chem. 2010, 20, 5462. doi: 10.1039/c0jm00672f

    11. [11]

      (11) Chen, J.; Huang, K. L.; Liu, S. Q. Chin. J. Inorg. Chem. 2008, 24, 621. [陈洁, 黄可龙, 刘素琴. 无机化学学报, 2008, 24, 621.]

    12. [12]

      (12) Cheng, F.; Huang, K. L.; Liu, S. Q.; Fang, X. S.; Zhang, X. Acta Phys. -Chim. Sin. 2011, 27 (6), 1439. [程风, 黄可龙, 刘素琴, 房雪松, 张新. 物理化学学报, 2011, 27 (6), 1439.] doi: 10.3866/PKU.WHXB20110607

    13. [13]

      (13) Liang, J. F.; Zhou, J.; Guo, L. Science Foundation in China 2013, 21 (1), 59.

    14. [14]

      (14) Tang, Y. P.;Wang, S. M.; Hou, G. Y.; Zheng, G. Q. Battery Bimonthly 2014, 44 (1), 50. [唐谊平, 王诗明, 侯广亚, 郑国渠. 电池, 2014, 44 (1), 50.]

    15. [15]

      (15) Sun, J.; Zhao, D. L.; Liu, H.; Jing, L.; Chi,W. D.; Shen, Z. M. J. Function Materials 2012, 43 (15), 2027. [孙杰, 赵东林,刘辉, 景磊, 迟伟东, 沈曾民. 功能材料, 2012, 43 (15), 2027.]

    16. [16]

      (16) Ban, C. M.;Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Adv. Mater. 2010, 22, E145.

    17. [17]

      (17) Ma, Y.; Zhang, C.; Ji, G.; Lee, J. Y. J. Mater. Chem. 2012, 22, 7845. doi: 10.1039/c2jm30422h

    18. [18]

      (18) Su, J.; Cao, M. H.; Ren, L., Hu, C.W. J. Phys. Chem. C 2011, 115, 14469.

    19. [19]

      (19) Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Chem. Commun. 2010, 46, 2025. doi: 10.1039/b919738a

    20. [20]

      (20) Chen, S. Q.;Wang, Y. J. Mater. Chem. 2010, 20, 9735. doi: 10.1039/c0jm01573c

    21. [21]

      (21) Wu, Z. S.; Zhou, G.; Yin, L. C.; Ren,W.; Li, F., Chen, H. M. Nano Energy 2012, 1, 107.

    22. [22]

      (22) Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388. doi: 10.1039/c3ee23870a

    23. [23]

      (23) Chen, S., Zhu, J.W.;Wu, X. D.; Han, Q. F.;Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t

    24. [24]

      (24) Zhou, G.;Wang, D.W.; Li, F.; Zhang, L.; Li, N.;Wu, Z. S.; Wen, L.; Lu, G. Q.; Chen, H. M. Chem. Mater. 2010, 22, 5306. doi: 10.1021/cm101532x

    25. [25]

      (25) Zhang, M.; Lei, D. N.; Yin, X. M.; Chen, L. B.; Li, Q. H.;Wang, Y. G.;Wang, T. H. J. Mater. Chem. 2010, 20, 5538. doi: 10.1039/c0jm00638f

    26. [26]

      (26) Behera, S. K. Chem. Commun. 2011, 47, 10371. doi: 10.1039/c1cc13218k

    27. [27]

      (27) Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z.;Warner, J. H. J. Mater. Chem. 2011, 21, 5069. doi: 10.1039/c0jm03717f

    28. [28]

      (28) Chen, Y.; Song, B. H.; Tang, X. S.; Lu, L.; Xu, J. M. J. Mater. Chem. 2012, 22, 17656. doi: 10.1039/c2jm32057f

    29. [29]

      (29) Zhu, X.; Zhu, Y.; Murali, S.; Stroller, M. D.; Ruoff, R. S. ACS Nano 2011, 5, 3333. doi: 10.1021/nn200493r

    30. [30]

      (30) Zai, J. T .; Yu, C.; Zou, Q.; Tao, L. Q.;Wang, K. X.; Han, Q. Y.; Li, B.; Xiao, Y. L.; Qian, X. F.; Qi, R. R. RSC Adv. 2012, 2, 4397. doi: 10.1039/c2ra20319g

    31. [31]

      (31) Fan, Z.; Yan, J.;Wei, T.; Zhi, L.; Ning, G.; Li, T.;Wei, F. Adv. Func. Mater. 2011, 11, 2905.

    32. [32]

      (32) Zhou, J.; Song, H.; Ma, L.; Chen, X. RSC Adv. 2011, 1, 782. doi: 10.1039/c1ra00402f

    33. [33]

      (33) Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z

    34. [34]

      (34) Yang, S.; Feng, X.; Ivanovici, S.; Mullen, K. Angew. Chem. Int. Edit. 2010, 49, 8408. doi: 10.1002/anie.201003485

    35. [35]

      (35) Wei,W.; Yang, S.; Zhou, H.; Lieberwirth, I.; Feng, X.; Mullen, K. Adv. Mater. 2013, 25, 2909. doi: 10.1002/adma.v25.21

    36. [36]

      (36) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017

    37. [37]

      (37) Armelao, L.; Bertoncello, R.; Crociani, L.; Depaoli, G.; Granozzi, G.; Tondello, E.; Bettinelli, M. J. Mater. Chem. 1995, 5, 79. doi: 10.1039/jm9950500079

    38. [38]

      (38) Qu, J.; Yin, Y. X.;Wang, Y. Q.; Yan, Y.; Guo, Y. G.; Song,W. G. ACS Appl. Mater. Interfaces 2013, 5, 3932.

    39. [39]

      (39) Anderson, M. A.; Rubin, A. J. Adsorption of Inorganics at Solid-Liquid Interfaces; Ann Arbor Science Publishers, Inc.: Ann Arbor, USA, 1981.

    40. [40]

      (40) Wang, T. Q.;Wang, X. L.; Lu, Y.; Xiong, Q. Q.; Zhao, X. Y.; Cai, J. B.; Huang, S.; Gu, C. D.; Tu, J. P. RSC Adv. 2014, 4, 322. doi: 10.1039/c3ra45268a


  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(720)
  • Abstract views(685)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return