Citation: ZHANG Zhao-Yan, ZHU Quan-Jing, DING Jing, DAI Wei-Lin, ZONG Bao-Ning. Effect of Support on the Structural Evolution and Catalytic Performance of WO3-Supported Catalysts in the Synthesis of Adipic Acid[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1527-1534. doi: 10.3866/PKU.WHXB201406121 shu

Effect of Support on the Structural Evolution and Catalytic Performance of WO3-Supported Catalysts in the Synthesis of Adipic Acid

  • Received Date: 14 April 2014
    Available Online: 12 June 2014

    Fund Project:

  • A series of tungsten-based catalysts were synthesized via a traditional impregnation method using SBA-15, hexa nal mesoporous silica (HMS), and SnO2 as the support. The supported catalysts were characterized by X-ray powder diffraction (XRD), transmission electron microscopy/field-emission transmission electron microscopy (TEM/FETEM), UV-Vis diffuse reflection spectroscopy (UV-Vis DRS), Raman spectrometry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was found that the support was crucial to the dispersion and nature of the tungsten species on the catalyst. In this study, the catalytic performances of catalysts with different supports were investigated for the synthesis of adipic acid (AA) from the selective oxidation of cyclohexene oxide. The excellent catalytic performance of the catalyst was obtained over WO3/SnO2, followed by WO3/HMS and WO3/SBA-15. The XRD results indicate that the degree of crystallinity of the tungsten species of WO3/SnO2 catalyst was low and the particle size of WO3 was small (~2 nm). TEM and XPS results imply a high dispersion of tungsten species on the SnO2 support. The UV-Vis DRS spectra demonstrate the existence of [WO4] and low-polymeric tungsten species. In addition, the W-based catalyst with SnO2 as the support could retain high activity, even after being reused six times, suggesting that there is strong interaction between tungsten species and the SnO2-support that enhanced the stability of the catalyst. This shows the potential of the WO3/SnO2 as a catalyst for the synthesis of adipic acid.

  • 加载中
    1. [1]

      (1) Yang, X. L.; Yin, A. Y.; Dai,W. L.; Fan, K. N. Acta Phys. -Chim. Sin. 2011, 27 (1), 177. [杨新丽, 尹安远, 戴维林, 范康年. 物理化学学报, 2011, 27 (1), 177.] doi: 10.3866/PKU.WHXB20110105

    2. [2]

      (2) Somma, F.; Strukul, G. J. Catal. 2004, 227 (2), 344. doi: 10.1016/j.jcat.2004.07.006

    3. [3]

      (3) Yang, X. L.; Dai,W. L.; Chen, H.; Cao, Y.; Li, H. X.; He, H. Y.; Fan, K. N. J. Catal. 2005, 229, 259.

    4. [4]

      (4) Sels, B. F.; Devos, D. E.; Jacobs, P. A. Angew. Chem. Int. Edit. 2005, 44 (2), 310.

    5. [5]

      (5) Wilson, R. D.; Barton, D. G.; Baertsch, C. D.; Iglesia, E. J. Catal. 2000, 194 (2), 175. doi: 10.1006/jcat.2000.2942

    6. [6]

      (6) Engweiler, J.; Harf, J.; Baiker, A. J. Catal. 1996, 159 (2), 259. doi: 10.1006/jcat.1996.0087

    7. [7]

      (7) Sivula, K.; Formal, F. L.; Grätzel, M. Chem. Mater. 2009, 21, 2862. doi: 10.1021/cm900565a

    8. [8]

      (8) Ham, D. J.; Phuruangrat, A.; Thongtem, S.; Lee, J. S. Chem. Eng. J. 2010, 165, 365. doi: 10.1016/j.cej.2010.09.003

    9. [9]

      (9) Takehara, K.; Yamazaki, K.; Miyazaki, M.; Yamada, Y.; Ruenphet, S.; Jahangir, A.; Shoham, D.; Okamura, M.; Nakamura, M. Virus Res. 2010, 151, 102. doi: 10.1016/j.virusres.2010.03.006

    10. [10]

      (10) Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. J. Am. Chem. Soc. 2008, 130, 7780. doi: 10.1021/ja800835q

    11. [11]

      (11) Qamar, M.; ndal, M. A.; Yamani, Z. H. Catal. Commun. 2010, 11, 768. doi: 10.1016/j.catcom.2010.02.012

    12. [12]

      (12) Morales,W.; Cason, M.; Aina, O.; Tacconi, N. R.; Rajeshwar, K. J. Am. Chem. Soc. 2008, 130, 6318. doi: 10.1021/ja8012402

    13. [13]

      (13) Huang, L. Y.; Xu, H.; Li, Y. P.; Li, H. M.; Cheng, X. N.; Xia, J. X.; Xu, Y. G.; Cai, G. B. Dalton Trans. 2013, 42, 8606. doi: 10.1039/c3dt00115f

    14. [14]

      (14) Li, F. B.; Gu, G. B.; Li, X. J.;Wan, H. F. Acta Phys. -Chim. Sin. 2000, 16 (11), 997. [李芳柏, 古国榜, 李新军, 万洪富. 物理化学学报, 2000, 16 (11), 997.] doi: 10.3866/PKU.WHXB20001108

    15. [15]

      (15) Horsley, J. A.;Wachs, I. E.; Brown, J. M.; Via, G. H.; Hardcastle, F. D. J. Phys. Chem. 1987, 91 (15), 4014. doi: 10.1021/j100299a018

    16. [16]

      (16) Engweiler, J.; Harf, J.; Baiker, A. J. Catal. 1996, 159 (2), 259. doi: 10.1006/jcat.1996.0087

    17. [17]

      (17) Hilbrig, F.; Göbel, H. E.; Knözinger, H.; Schmelz, H.; Lengeler, B. J. Phys. Chem. 1991, 95 (18), 6973. doi: 10.1021/j100171a046

    18. [18]

      (18) Colque, S.; Payen, E.; Grange, P. J. Mater. Chem. 1994, 4 (8), 1343. doi: 10.1039/jm9940401343

    19. [19]

      (19) Kim, D. S.; Ostromecki, M.;Wachs, I. E. J. Mol. Catal. A: Chem. 1996, 106 (1-2), 93. doi: 10.1016/1381-1169(95)00186-7

    20. [20]

      (20) Kim, D. S.; Ostromecki, M.;Wachs, I. E.; Kohler, S. D.; Ekerdt, J. G. Catal. Lett. 1995, 33 (3-4), 209. doi: 10.1007/BF00814225

    21. [21]

      (21) Zhu, Q. J.; Chu, X. F.; Zhang, Z. Y.; Dai,W. L.; Fan, K. N. Appl. Catal. A: Gen. 2012, 435 -436, 141.

    22. [22]

      (22) Mallesham, B.; Sudarsanam, P.; Raju, G.; Reddy, B. M. Green Chem. 2013, 15 (2), 478. doi: 10.1039/c2gc36152c

    23. [23]

      (23) Klepel, O.; Böhlmann,W.; Ivanov, E. B.; Riede, V.; Papp, H. Microporous Mesoporous Mat. 2004, 76 (1-3), 105. doi: 10.1016/j.micromeso.2004.07.038

    24. [24]

      (24) Koo, D. H.; Kim, M.; Chang, S. Org. Lett. 2005, 7 (22), 5015. doi: 10.1021/ol052019i

    25. [25]

      (25) Niu, X. S.; Liu, Y. L.; Hu, P.; Xu, J. Q. Electron. Comp. Mater. 2002, 21 (1), 10. [牛新书, 刘艳丽, 胡平, 徐甲强. 电子元件与材料, 2002, 21 (1), 10.]

    26. [26]

      (26) Kamata, K.; Yonehara, K.; Sumida, Y.; Hirata, K.; Nojima, S.; Mizuno, N. Angew. Chem. Int. Edit. 2011, 50 (50), 12062. doi: 10.1002/anie.v50.50

    27. [27]

      (27) Wang, J. M. Chem. Technol. Market 2010, 33 (11), 1. [汪家铭. 化工科技市场, 2010, 33 (11), 1.]

    28. [28]

      (28) Penate, I. Q.; Lesage, G.; Cognet, P.; Poux, M. Chem. Eng. J. 2012, 200 -202, 357.

    29. [29]

      (29) Wei, L.; Chen, M.; Liu, N.;Wang, S. J.;Wang, J. F. J. Dalian Polytech. University 2010, 29 (3), 216. [魏莉, 陈梅, 刘娜, 王少君, 王吉峰. 大连工业大学学报, 2010, 29 (3), 216.]

    30. [30]

      (30) Jiang, H.; ng, H.; Yang, Z. H.; Zhang, X. T.; Sun, Z. L.; Kinet, R. Catal. Lett. 2002, 75 (2), 315. doi: 10.1023/A:1015207214720

    31. [31]

      (31) Cheng, C.Y.; Lin, K. J.; Prasad, M. R.; Fu, S. J.; Chang, S. Y.; Shyu, S. G.; Sheu, H. S.; Chen, C. H.; Chuang, C. H.; Lin, M. T. Catal. Commun. 2007, No. 8, 1060.

    32. [32]

      (32) Bohstrom, Z.; Lattes, I. R.; Holmberg, K. Green Chem. 2010, 12, 1861. doi: 10.1039/c0gc00032a

    33. [33]

      (33) Sheng, X. L.; Zhou, Y. M.; Zhang, Y.W.; Duan, Y. Z.; Xue, M. W. Catal. Lett. 2012, 142, 360. doi: 10.1007/s10562-012-0769-5

    34. [34]

      (34) Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Benesi, A. J.; Mallouk, T. E. Chem. Mater. 1995, 7 (2), 304. doi: 10.1021/cm00050a012

    35. [35]

      (35) Briot, E.; Piquemat, J. Y.; Vennat, M.; Brégeault, J. M.; Chottard, G.; Manoli, J. M. J. Mater. Chem. 2000, 10 (4), 953. doi: 10.1039/a908428b

    36. [36]

      (36) Klepel, O.; Böhlmann,W.; Ivanov, E. B.; Riede, V.; Papp, H. Microporous Mesoporous Mat. 2004, 76 (1-3), 105. doi: 10.1016/j.micromeso.2004.07.038

    37. [37]

      (37) Weber, R. S. J. Catal. 1995, 151 (2), 470. doi: 10.1006/jcat.1995.1052

    38. [38]

      (38) Iglesia, E.; Barton, D. G.; Soled, S. L.; Miseo, S.; Baumgartner, J. E.; Gates,W. E.; Fuentes, G. A.; Meitzner, G. D. Stud. Surf. Sci. Catal. 1996, 101, 533. doi: 10.1016/S0167-2991(96)80264-3

    39. [39]

      (39) Yang, X. L.; Dai,W. L.; Chen, H.; Xu, J. H.; Cao, Y.; Li, H. X.; Fan, K. N. Appl. Catal. A: Gen. 2005, 283, 1. doi: 10.1016/j.apcata.2004.12.029

    40. [40]

      (40) Ansari, S. G.; Dar, M. A.; Dhage, M. S.; Kim, Y. S.; Ansari, Z. A.; Al-Hajry, A.; Shin, H. S. Rev. Sci. Instrum. 2009, 80 (4), 045112-1. doi: 10.1063/1.3115222

    41. [41]

      (41) Chen, C. Y.; Li, H. X.; Davis, M. E. Micropor. Mater. 1993, 2 (1), 17. doi: 10.1016/0927-6513(93)80058-3

    42. [42]

      (42) Fu, Z. H.; Yin, D. L.; Xie, Q. J.; Zhao,W.; Lv, A.; Yin, D. H.; Xu, Y. Z.; Zhang, L. X. J. Mol. Catal. A: Chem. 2004, 208 (1-2), 159. doi: 10.1016/S1381-1169(03)00508-9

    43. [43]

      (43) Zhu, J. J.; Lu, Z. H.; Aruna, S. T.; Aurbach, D.; Aharon, G. Chem. Mater. 2000, 12, 2557. doi: 10.1021/cm990683l

    44. [44]

      (44) Kotbagi, T. V.; Biradar, A. V.; Umbarkar, S. B.; Dongare, M. K. ChemCatChem 2013, 5, 1531. doi: 10.1002/cctc.v5.6


  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    6. [6]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

Metrics
  • PDF Downloads(701)
  • Abstract views(443)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return