Citation: LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1474-1480. doi: 10.3866/PKU.WHXB201406041
-
Reduced graphene oxide/sulfur (R /S) composites were synthesized by a one-step hydrothermal method using a mixture of sodium thiosulfate (Na2S2O3) and graphene oxide ( ) solution reacting under acid conditions. We explored the influence of the hydrothermal temperature, reaction time, and sulfur content on the composites. Analysis by X-ray diffraction (XRD), scanning electron microscope (SEM), and the galvanostatic charge and discharge shows that the composites have excellent cycling performance when synthesis occurs at 180 ℃ for 12 h to provide a carbon:sulfur mass ratio of 3:7. The first discharge capacity is delivered at 931 mAh·g-1 and it remains at 828.16 mAh·g-1 after 50 cycles. The coulomb efficiency of the composites is above 95%. In addition, the rate capability of these composites is much better than that of sulfur. Sulfur molecules can be evenly distributed between the graphene layers and fixed to the functional groups on the surface of graphene by this one-step hydrothermal method.
-
-
[1]
(1) Nagaura, T.; Tozawa, K. Prog. Batte. Solar Cells 1990, 9, 209.
-
[2]
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
-
[3]
(3) Dean, J. A. Lange's Handbook of Chemistry, 3rd ed.; McGraw-Hill: New York, 1985; pp 3-5.
-
[4]
(4) He, X. M.; Pu,W. H.; Ren, J. G.;Wang, L.;Wang, J. L.; Jiang, C. Y.;Wan, C. R. Electrochim. Acta 2007, 52, 7372. doi: 10.1016/j.electacta.2007.06.016
-
[5]
(5) Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. J. Electrochem. Soc. 2003, 150, 889. doi: 10.1149/1.1576766
-
[6]
(6) Zheng,W.; Liu, Y.W.; Hu, X. G.; Zhang, C. F. Electrochim. Acta 2006, 51, 1330. doi: 10.1016/j.electacta.2005.06.021
-
[7]
(7) Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu,W. J. Power Sources 2009, 189, 1141. doi: 10.1016/j.jpowsour.2008.12.149
-
[8]
(8) Chen, J. J.; Jia, X.; She, Q. J.;Wang, C.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. Electrochim. Acta 2010, 55, 8062. doi: 10.1016/j.electacta.2010.01.069
-
[9]
(9) Li, S.; Xie, M.; Liu, J. B.;Wang, H.; Yan, H. J. Electrochem. Solid-State Lett. 2011, 14, A105.
-
[10]
(10) Ji, X.; Lee, K. T.; Nazar, L. F. Nature Mater. 2009, 8, 500. doi: 10.1038/nmat2460
-
[11]
(11) Li, X. L.; Cao, Y. L.; Qi,W.; Saraf, V. L.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. J. Mater. Chem. 2011, 21, 16603. doi: 10.1039/c1jm12979a
-
[12]
(12) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29, 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29, 546.] doi: 10.3866/PKU.WHXB201301081
-
[13]
(13) Fu, Y.; Manthiram, A. J. Phys. Chem. C 2012, 116, 8910. doi: 10.1021/jp305718z
-
[14]
(14) Guo, J. C.; Yang, Z. C.; Yu, Y. C.; Abruna, H. D.; Archer, L. A. J. Am. Chem. Soc. 2013, 135, 763. doi: 10.1021/ja309435f
-
[15]
(15) Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Electrochim. Acta 2012, 83, 78. doi: 10.1016/j.electacta.2012.07.118
-
[16]
(16) Li, Y. J.; Zhan, H.; Kong, L. B.; Zhan, C. M.; Zhou, Y. H. Electrochem. Commun. 2007, 9, 1217. doi: 10.1016/j.elecom.2007.01.016
-
[17]
(17) Wang,W. K.;Wang, A. B.; Cao, G. P.; Yang, Y. S. Acta Phys. -Chim. Sin. 2004, 20, 1440. [王维坤, 王安邦, 曹高萍, 杨裕生. 物理化学学报, 2004, 20, 1440.] doi: 10.3866/PKU.WHXB20041208
-
[18]
(18) Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu,W. C.; Qian,W. Z.;Wei, F. Nano Energy 2013, 2, 314. doi: 10.1016/j.nanoen.2012.10.003
-
[19]
(19) Kim, K. H.; Jun, Y. S.; Gerbec, J. A.; See, K. A.; Stucky, G. D.; Jung, H. T. Carbon 2014, 69, 543. doi: 10.1016/j.carbon.2013.12.065
-
[20]
(20) Zhou,W. D.; Chen, H.; Yu, Y. C.;Wang, D. L.; Cui, Z. M.; DiSalvo, F. J.; Abruna, H. D. ACS Nano 2013, 7, 8801.
-
[21]
(21) Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chemistry of Materials 2009, 21, 2950. doi: 10.1021/cm9006603
-
[22]
(22) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[23]
(23) Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2006, 44, 3342. doi: 10.1016/j.carbon.2006.06.004
-
[24]
(24) Yu, J. G.;Wang, G. H.; Cheng, B.; Zhou, M. H. Journal of Applied Catalysis 2007, 69, 171. doi: 10.1016/j.apcatb.2006.06.022
-
[25]
(25) Li, Y. J.; Zhan, H.; Liu, S. Q.; Huang, K. L.; Zhou, Y. H. J. Power Sources 2010, 195, 2945. doi: 10.1016/j.jpowsour.2009.11.004
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[5]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[6]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[7]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[8]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[11]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[12]
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
-
[13]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[14]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[15]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[16]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[17]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[18]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[19]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[20]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[1]
Metrics
- PDF Downloads(852)
- Abstract views(606)
- HTML views(16)