Citation: LIANG Yan-Ni, WANG Fan. Theoretical Studies on Low-Lying States of AuX (X=O, S)[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1447-1455. doi: 10.3866/PKU.WHXB201405302 shu

Theoretical Studies on Low-Lying States of AuX (X=O, S)

  • Received Date: 11 April 2014
    Available Online: 30 May 2014

    Fund Project:

  • Multireference approaches have commonly been employed to calculate low-lying states of openshell molecules with spin-orbit coupling (SOC), such as for AuO and AuS. However, by choosing a proper reference state, the equation-of-motion coupled-cluster approach (EOM-CC) can also be used to calculate some low-lying states of these molecules. Furthermore, the EOM-CC approach is a single-reference method and, therefore, more easily employed than multireference approaches. In this work, low-lying states of AuO and AuS are investigated based on a recently developed EOM-CC approach for ionization potentials (EOMIP-CC) with SOC at the CCSD level, using the corresponding anions as reference. The contribution of triples with EOMIPCC is estimated by comparing results of EOMIP-CCSD and EOMIP-CCSDT at a scalar relativistic level. In addition, compared with the EOMIP-CCSDT results, errors by UCCSD(T) can reach 0.1-0.15 eV when spin contamination is significant and the norm of T1 is sizeable. When SOC is present, bond lengths and harmonic frequencies obtained with EOMIP-CCSD for the investigated states are in reasonable agreement with experimental data. Furthermore, ionization energies corresponding to the high-lying 2Δ3/2, 2Σ1/2+, and 2Π1/2 states are overestimated by EOMIP-SOC-CCSD, but results for the other low- lying states agree well with the experimental data, with an error of approximately 0.2 eV. These results indicate that the single-reference EOMIPCCSD method with SOC is able to provide a reasonable description of low-lying states of AuO and AuS.

  • 加载中
    1. [1]

      (1) Pitzer, K. S. Accounts Chem. Res. 1979, 12, 272.

    2. [2]

      (2) Pyykko, P.; Desclaux, J. P. Accounts Chem. Res. 1979, 12, 276. doi: 10.1021/ar50140a002

    3. [3]

      (3) Pyykko, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006

    4. [4]

      (4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789

    5. [5]

      (5) Griffiths, M. J.; Barrow, R. F. J. Chem. Soc., Faraday Trans. 1977, 73, 943. doi: 10.1039/f29777300943

    6. [6]

      (6) Citra, A.; Andrews, L. Theochem 1999, 489, 95. doi: 10.1016/S0166-1280(98)00516-8

    7. [7]

      (7) Sun, Q.; Jena, P.; Kim, Y. D.; Fischer, M.; Gantefor, G. J. Chem. Phys. 2004, 120, 6510. doi: 10.1063/1.1666009

    8. [8]

      (8) Ichino, T.; Gianola, A. J.; Andrews, D. H.; Lineberger,W. C. J. Phys. Chem. A 2004, 108, 11307. doi: 10.1021/jp045791w

    9. [9]

      (9) O'Brien, L. C.; Hardimon, S. C.; O'Brien, J. J. J. Phys. Chem. A 2004, 108, 11302. doi: 10.1021/jp045812m

    10. [10]

      (10) O′Brien, L. C.; Oberlink, A. E.; Roos, B. O. J. Phys. Chem. A 2006, 110, 11954. doi: 10.1021/jp063394a

    11. [11]

      (11) Okabayashi, T.; Koto, F.; Tsukamoto, K.; Yamazaki, E.; Tanimoto, M. Chem. Phys. Lett. 2005, 403, 223. doi: 10.1016/j.cplett.2005.01.003

    12. [12]

      (12) Zhai, H. J.; Bürgel, C.; Bonacic-Koutecky, V.;Wang, L. S. J. Am. Chem. Soc. 2008, 130, 9156. doi: 10.1021/ja802408b

    13. [13]

      (13) Legge, F. S.; Nyberg, G. L.; Peel, J. B. J. Phys. Chem. A 2001, 105, 790.

    14. [14]

      (14) Wu, Z. J. J. Phys. Chem. A 2005, 109, 5951. doi: 10.1021/jp0500283

    15. [15]

      (15) Yao, C.; Guan,W.; Song, P.; Su, Z. M.; Feng, J. D.; Yan, L. K.; Wu, Z. J. Theor. Chem. Acc. 2007, 117, 115.

    16. [16]

      (16) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    17. [17]

      (17) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822

    18. [18]

      (18) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    19. [19]

      (19) Roos, B. O.; Malmqvist, P. Å. Phys. Chem. Chem. Phys. 2004, 6, 2919. doi: 10.1039/b401472n

    20. [20]

      (20) Li, Z.; Suo, B.; Zhang, Y.; Xiao, Y.; Liu,W. Mol. Phys. 2013, 111, 3741. doi: 10.1080/00268976.2013.785611

    21. [21]

      (21) Krylov, A. I. Annu. Rev. Phys. Chem. 2008, 59, 433. doi: 10.1146/annurev.physchem.59.032607.093602

    22. [22]

      (22) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022

    23. [23]

      (23) Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1995, 102, 3629. doi: 10.1063/1.468592

    24. [24]

      (24) Tu, Z. Y.;Wang, F.; Li, X. Y. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894

    25. [25]

      (25) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136

    26. [26]

      (26) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002

    27. [27]

      (27) Cao, Z. L.;Wang, Z. F.; Yang, M. L.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (3), 431. [曹战利, 王治钒, 杨明理, 王繁. 物理化学学报, 2014, 30 (3), 431.]. doi: 10.3866/PKU.WHXB201401023

    28. [28]

      (28) Liang, Y. N.;Wang, F.; Li, X. Y. Phys. Chem. Chem. Phys. 2013, 15, 17929. doi: 10.1039/c3cp52192c

    29. [29]

      (29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673

    30. [30]

      (30) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133

    31. [31]

      (31) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.

    32. [32]

      (32) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010

    33. [33]

      (33) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954

    34. [34]

      (34) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746

    35. [35]

      (35) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.

    36. [36]

      (36) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387

    37. [37]

      (37) Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chem. Phys. Lett. 2005, 311, 227.

    38. [38]

      (38) Weigend, F.; Baldes, A. J. Chem. Phys. 2010, 133, 174102. doi: 10.1063/1.3495681

    39. [39]

      (39) Rappoport, D.; Furche, F. J. Chem. Phys. 2010, 133, 134105. doi: 10.1063/1.3484283

    40. [40]

      (40) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G.; Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packages MOLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V. and van Wüllen, C., CFOUR, Version 1.2; see http://www.cfour.de

    41. [41]

      (41) Liu,W. J.; van Wüllen, C. J. Chem. Phys. 1999, 110, 3730. doi: 10.1063/1.478237

    42. [42]

      (42) Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 411. doi: 10.1021/ja982234c


  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    3. [3]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    4. [4]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    7. [7]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(488)
  • Abstract views(415)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return