Citation: WANG Fang-Fang, CAO Zhan-Min, CHEN Jun, XING Xian-Ran. Effects of A-Site Substitutions on Negative Thermal Expansion in PbTiO3 fromFirst-Principles Calculations[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1432-1436. doi: 10.3866/PKU.WHXB201405281
-
Recent experimental results have indicated that the negative thermal expansion is a common phenomenon in PbTiO3-based materials, and that this expansion is affected by various substitutions. Interestingly, Cd substitution in PbTiO3 has a unique effect compared with other A-site substitutions, in that it enhances negative thermal expansion. Therefore, studying A-site substitution in PbTiO3, the role of which still remains unclear, would provide a deeper understanding of the nature of the negative thermal expansion of PbTiO3-based materials. Herein we report the results of structural calculations, densities of states and the minimumelectron densities of Pb1-xSrxTiO3, Pb1-xBaxTiO3, and Pb1-xCdxTiO3 supercells on the basis of chemical bond first-principles calculations. The results demonstrate that the hybridization between Cd―O orbitals is more pronounced than that between Pb―O orbitals, while the bonding between Ba/Sr and O is almost ionic in nature. Cd substitution was found to have an unusual effect in terms of enhancing the average bulk coefficient of thermal expansion in PbTiO3. In contrast, Ba and Sr substitutions reduce the coefficient. Thus, the covalency in the bonding between the A- site and O in PbTiO3- based materials is responsible for the enhanced negative thermal expansion.
-
-
[1]
(1) Xing, X. R.; Deng, J. X.; Chen, J.; Liu, G. R. Rare Met. 2003, 22, 294.
-
[2]
(2) Chen, J.; Nittala, K.; Forrester, J. S.; Jones, J. L.; Deng, J.; Yu, R.; Xing, X. J. Am. Chem. Soc. 2011, 133 (29), 11114. doi: 10.1021/ja2046292
-
[3]
(3) Chandra, A.; Pandeya, D.; Mathews, M. D.; Tyagi, A. K. J. Mater. Res. 2005, 20, 350. doi: 10.1557/JMR.2005.0062
-
[4]
(4) Evans, J. S. O. Dalton Trans. 1999, 19, 3317.
-
[5]
(5) Mohn, P. Nature 1999, 400, 18. doi: 10.1038/21778
-
[6]
(6) Zheng, X. G.; Kubozono, H.; Yamada, H.; Kato, K.; Ishiwata, Y.; Xu, C. N. Nat. Nanotechnol. 2008, 3, 724. doi: 10.1038/nnano.2008.309
-
[7]
(7) Korcök, J. L.; Katz, M. J.; Leznoff, D. B. J. Am. Chem. Soc. 2009, 131, 4866. doi: 10.1021/ja809631r
-
[8]
(8) Zwanziger, J. W. Phys. Rev. B 2007, 76, 052102.
-
[9]
(9) Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.;Wilkinson, A. P. J. Am. Chem. Soc. 2010, 132, 15496. doi: 10.1021/ja106711v
-
[10]
(10) odwin, A. L.; Calleja, M.; Conterio, M. J.; Dove, M. T.; Evans, J. S. O.; Keen, D. A.; Peters, L.; Tucker, M. G. Science 2008, 319, 794. doi: 10.1126/science.1151442
-
[11]
(11) Biernacki, S.; SchefBer, M. Phys. Rev. Lett. 1989, 63, 290. doi: 10.1103/PhysRevLett.63.290
-
[12]
(12) Azuma, M.; Chen, W. T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N.; Ishiwata, S.; Tucker, M. G.; Shimakawa, Y.; Attfield, J. P. Nat. Commun. 2011, 2, 347. doi: 10.1038/ncomms1361
-
[13]
(13) Pryde, A. K. A.; Hammonds, K. D.; Dove, M. T.; Heine, V.; Gale, J. D.; Warren, M. C. Phase Trans. 1997, 61, 141. doi: 10.1080/01411599708223734
-
[14]
(14) Chen, J.; Hu, P. H.; Sun, X. Y.; Sun, C.; Xing, X. R. Appl. Phys. Lett. 2007, 91, 171907. doi: 10.1063/1.2794742
-
[15]
(15) Chen, J.; Xing, X. R.; Sun, C.; Hu, P. H.; Yu, R. B.; Wang, X. W.; Li, L. H. J. Am. Chem. Soc. 2008, 130, 1144. doi: 10.1021/ja7100278
-
[16]
(16) Chen, J.; Xing, X. R.; Yu, R. B.; Liu, G. R. Appl. Phys. Lett. 2005, 87, 231915. doi: 10.1063/1.2140486
-
[17]
(17) Wang, F. F.; Xie, Y.; Chen, J.; Fu, H. G.; Xing, X. R. Phys. Chem. Chem. Phys. 2014, 16, 5237. doi: 10.1039/c3cp53197j
-
[18]
(18) Cheng, H. P.; Chen, G. H.; Qin, R.; Dan, J. K.; Huang, Z. M.; Peng, H.; Chen, T. N., Lei, J. B. Acta Phys. -Chim. Sin. 2014, 30, 281. [程和平,陈光华,覃睿,但加坤,黄智蒙,彭辉,陈图南,雷江波.物理化学学报, 2014, 30, 281.] doi: 10.3866/PKU.WHXB201312171
-
[19]
(19) Cohen, R. E.; Krakauer, H. Ferroelectrics 1992, 136, 65. doi: 10.1080/00150199208016067
-
[20]
(20) García, A.; Vanderbilt, D. Phys. Rev. B 1996, 54, 3817. doi: 10.1103/PhysRevB.54.3817
-
[21]
(21) Cohen, R. E.; Sághi-Szabó, G. Phys. Rev. Lett. 1998, 80, 4321. doi: 10.1103/PhysRevLett.80.4321
-
[22]
(22) Cockayne, E.; Burton, B. Phys. Rev. B 2004, 69, 144116. doi: 10.1103/PhysRevB.69.144116
-
[23]
(23) Cohen, R. E. Nature 1992, 358, 136. doi: 10.1038/358136a0
-
[24]
(24) Grinberg, I.; Rappe, A. M. Phase Trans. 2007, 80, 351. doi: 10.1080/01411590701228505
-
[25]
(25) Yashima, M.; Omoto, K.; Chen, J.; Kato, H.; Xing, X. R. Chem. Mater. 2011, 23, 3135. doi: 10.1021/cm201184y
-
[26]
(26) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
-
[27]
(27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[28]
(28) Suárez-Sandoval, D. Y.; Davies, P. K. Appl. Phys. Lett. 2003, 82, 3215. doi: 10.1063/1.1573362
-
[29]
(29) Kuroiwa, Y.; Aoyagi, S.; Sawada, A.; Harada, J.; Nishibori, E.; Takata, M.; Sakata, M. Phys. Rev. Lett. 2001, 87, 217601. doi: 10.1103/PhysRevLett.87.217601
-
[30]
(30) Piskunov, S.; Heifets, E.; Eglitis, R. I.; Borstel, G. Comput. Mater. Sci. 2004, 29, 165. doi: 10.1016/j.commatsci.2003.08.036
-
[31]
(31) Xing, X. R.; Deng, J. X.; Zhu, Z. Q.; Liu, G. R. J. Alloy. Compd. 2003, 353, 1. doi: 10.1016/S0925-8388(02)01178-7
-
[32]
(32) Xing, X. R.; Chen, J.; Deng, J. X.; Liu, G. R. J. Alloy. Compd. 2003, 360, 286. doi: 10.1016/S0925-8388(03)00345-1
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[5]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[6]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[7]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[8]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[9]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[10]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[11]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[15]
Qingcui Yang , Wen Liu , Li Cao , Chen Tang , Bing Xu , Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029
-
[16]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[17]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[18]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[19]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[20]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[1]
Metrics
- PDF Downloads(687)
- Abstract views(701)
- HTML views(7)