Citation: SU Jia, LU Shan, WANG Sha-Sha, ZHANG Xue-Hua, FU Yu-Bin, HE Tao. Influence of pH Values on the Structure and Performance of a Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1487-1494. doi: 10.3866/PKU.WHXB201405272
-
The pH of the solution used to produce an electro- polymerized polypyrrole (PPy) film has a significant impact on the morphology and properties of the resulting film and, by extension, on the electrocatalytic activity of the film for the I-/I3- redox reaction. Accordingly, the performance of dye-sensitized solar cells (DSSCs) based on PPy counter electrodes (CEs) is affected by solution pH. In this study, p-toluene sulfonate ion-doped PPy (PPy-TsO) CEs on fluorine-doped tin oxide (FTO) glass substrates were fabricated using an electrochemical method under a constant bias in solutions with various pH values. The effect of the pH of the synthetic solution on the morphology, structure, and electrocatalytic activity during the I-/I3- redox reaction of the obtained PPy CEs was thoroughly investigated by scanning electron microscopy (SEM), UV-Vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). A pH value of 2.0 was found to represent the optimal value, since the PPy-TsO film produced at this pH exhibited the highest degree of doping, the longest conjugation length, and the highest catalytic activity. When working as the CE of a DSSC, this film also showed the highest power conversion efficiency. Films synthesized at pH values either above or below 2.0 exhibited inferior properties and lower performance when in DSSCs.
-
-
[1]
(1) Regan, B. O.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3. doi: 10.1016/j.jphotochem.2004.02.023
-
[3]
(3) Papageorgiou, N. Coord. Chem. Rev. 2004, 248, 1421. doi: 10.1016/j.ccr.2004.03.028
-
[4]
(4) Murakami, T. N.; Grätzel, M. Inorg. Chim. Acta 2008, 361, 572. doi: 10.1016/j.ica.2007.09.025
-
[5]
(5) Olsen, E.; Hagen, G.; Lindquist, S. E. Sol. Energy Mater. Sol. Cells 2000, 63, 267. doi: 10.1016/S0927-0248(00)00033-7
-
[6]
(6) Kay, A.; Grätzel, M. Sol. Energy Mater. Sol. Cells 1996, 44, 99. doi: 10.1016/0927-0248(96)00063-3
-
[7]
(7) Hao, F.; Dong, P.; Zhang, J.; Zhang, Y. C.; Loya, P. E.; Hauge, R. H.; Li, J. B.; Lou, J.; Lin, H. Sci. Rep. 2012, 2, 368.
-
[8]
(8) ng, F.; Li, Z. Q.;Wang, H.;Wang, Z. S. J. Mater. Chem. 2012, 22, 17321. doi: 10.1039/c2jm33483f
-
[9]
(9) Wu, M. X.; Lin, X.;Wang, Y. D.;Wang, L.; Guo,W.; Qi, D. D.; Peng, X. J.; Hagfeldt, A.; Grätzel, M.; Ma, T. L. J. Am. Chem. Soc. 2012, 134, 3419. doi: 10.1021/ja209657v
-
[10]
(10) ng, F.;Wang, H.; Xu, X.; Zhou, G.;Wang, Z. S. J. Am. Chem. Soc. 2012, 134, 10953. doi: 10.1021/ja303034w
-
[11]
(11) Jiang, Q.W.; Li, G. R.; Gao, X. P. Chem. Commun. 2009, 45, 6720.
-
[12]
(12) Wu, J. H.; Li, Q. H.; Fan, L. Q.; Lan, Z.; Li, P. J.; Lin, J. M.; Hao, S. C. J. Power Sources 2008, 181, 172. doi: 10.1016/j.jpowsour.2008.03.029
-
[13]
(13) Tian, H. N.; Yu, Z.; Hagfeldt, A.; Kloo, L.; Sun, L. C. J. Am. Chem. Soc. 2011, 113, 9413.
-
[14]
(14) Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho,W. J.; Chen, H. C.; Ho, K. C. J. Power Sources 2009, 188, 313. doi: 10.1016/j.jpowsour.2008.11.075
-
[15]
(15) Wang, H.; Feng, Q. Y. ; ng, F.; Li, Y. ; Zhou, G.;Wang, Z. S. J. Mater. Chem. A 2013, 1, 97. doi: 10.1039/c2ta00705c
-
[16]
(16) Xia, J. B.; Chen, L.; Yanagida, S. J. Mater. Chem. 2011, 21, 4644. doi: 10.1039/c0jm04116e
-
[17]
(17) Tai, Q. D.; Chen, B.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao, X. Z. ACS Nano 2011, 5, 3795. doi: 10.1021/nn200133g
-
[18]
(18) Wang, S. S.; Lu, S.; Li, X. M.; Zhang, X. H.; He, S. T.; He, T. J. Power Sources 2013, 242, 438. doi: 10.1016/j.jpowsour.2013.05.060
-
[19]
(19) Zhang, X. H.;Wang, S. S.; Lu, S.; Su, J.; He, T. J. Power Sources 2014, 246, 491. doi: 10.1016/j.jpowsour.2013.07.098
-
[20]
(20) Wang, S. S.; Lu, S.; Su, J.; Guo, Z. K.; Li, X. M.; Zhang, X. H.; He, S. T.; He, T. Acta Phys. -Chim. Sin. 2013, 29, 516. [王莎莎, 芦姗, 郭正凯, 李学敏, 张雪华, 何声太, 贺涛. 物理化学学报, 2013, 29, 516.] doi: 10.3866/PKU.WHXB201301092
-
[21]
(21) Xiao, Y. M.; Lin, J. Y.;Wu, J. H.; Tai, S. Y.; Yue, G. T.; Lin, T. W. J. Power Sources 2013, 233, 320. doi: 10.1016/j.jpowsour.2013.01.116
-
[22]
(22) Sun. H. C.; Luo, Y. H.; Zhang, Y. D.; Li, D. M.; Yu, Z. X.; Li, K. X.; Meng, Q. B. J. Phys. Chem. C 2010, 114, 11673. doi: 10.1021/jp1030015
-
[23]
(23) Cai, B. H.; Cao, L.;Wang, Z. J. Chem. Tech. Market 2010, 33, 11. [蔡本慧, 曹雷, 王肇君. 化工科技市场, 2010, 33, 11.]
-
[24]
(24) Cosnier, S.; Karyakin, A. Electropolymerization Concepts, Materials and Applications;Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim, 2010.
-
[25]
(25) Makris, T.; Dracopoulos, V.; Stergiopoulos, T.; Lianos, P. Electrochim. Acta 2011, 56, 2004. doi: 10.1016/j.electacta.2010.11.076
-
[26]
(26) Xia, J. B.; Chen, L.; Yanagida, S. J. Mater. Chem. 2011, 21, 4644. doi: 10.1039/c0jm04116e
-
[27]
(27) Chen, L. J.; Guo, C. X.; Zhang, Q. M.; Lei, Y. L.; Xie, J. L.; Ee, S. J.; Guai, G. H.; Song, Q. L.; Li, C. M. ACS Appl. Mater. Interfaces 2013, 5, 2047. doi: 10.1021/am302938a
-
[28]
(28) Diaz, F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commun. 1979, 635.
-
[29]
(29) Qian, R. Y.; Qiu, J. J. Polymer J. 1987, 19, 157. doi: 10.1295/polymj.19.157
-
[30]
(30) Ouyang, J. Y.; Li, Y. F. Polymer 1997, 38, 1971. doi: 10.1016/S0032-3861(96)00749-5
-
[31]
(31) Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. Chem. Soc. Rev. 2000, 29, 283. doi: 10.1039/a807124a
-
[32]
(32) Satoh, M.; Imanishi, K.; Yoshino, K. J. Electroanal. Chem. 1991, 317, 139. doi: 10.1016/0022-0728(91)85009-E
-
[33]
(33) Otero, T. F.; Rodriguez, J. Electrochim. Acta 1994, 39, 245. doi: 10.1016/0013-4686(94)80060-X
-
[34]
(34) Lei, J.; Cai, Z.; Martin, C. R. Synth. Met. 1992, 46, 5.
-
[35]
(35) Bredas, J. L.; Street, G. B. Accounts Chem. Res. 1985, 18, 309. doi: 10.1021/ar00118a005
-
[36]
(36) West, K.; Bay, L.; Nielsen, M. M.; Velmurugu, Y.; Skaarup, S. J. Phys. Chem. B 2004, 108, 15001. doi: 10.1021/jp048153m
-
[37]
(37) Saito, Y.; Kubo,W.; Kitamura, T.;Wada, Y.; Yanagida, S. J. Photochem. Photobiol. A 2004, 164, 153. doi: 10.1016/j.jphotochem.2003.11.017
-
[38]
(38) Biallozor, S.; Kupniewska, A. Electrochem. Commun. 2000, 2, 480. doi: 10.1016/S1388-2481(00)00068-0
-
[39]
(39) Shen, X. J.; Sun, B. Q.; Liu, D.; Lee, S. T. J. Am. Chem. Soc. 2011, 133, 19408. doi: 10.1021/ja205703c
-
[1]
-
-
[1]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[2]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[3]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[4]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[5]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[6]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[7]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[8]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[9]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[10]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[11]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[12]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[13]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[16]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[17]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[18]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[19]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[20]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[1]
Metrics
- PDF Downloads(403)
- Abstract views(613)
- HTML views(13)