Citation: HAO Teng, WANG Jun, YU Tie, WANG Jian-Qiang, SHEN Mei-Qing. Effect of NO2 on the Selective Catalytic Reduction of NO with NH3 over Cu/SAPO-34 Molecular Sieve Catalyst[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1567-1574. doi: 10.3866/PKU.WHXB201405261
-
This study investigated the effects of NO2 on the selective catalytic reduction (SCR) of NO by NH3 over Cu/SAPO-34 catalyst at temperatures ranging from 100 to 500 ℃. The Cu/SAPO- 34 sample was hydrothermally treated at 750 ℃ for 4 h to obtain a de-greened sample and X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure of the catalyst. SCR activity test, kinetic analysis, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ-DRIFTS) were all applied to evaluate the changes in catalytic activity in the presence of various NO/NO2 ratios. The SCR results for different NO/NO2 molar ratios demonstrated that NO2 inhibited the NOx removal efficiency over the Cu/SAPO- 34 catalyst at low temperatures (100-280 ℃), but enhanced the efficiency at high temperatures (above 280 ℃). The amount of N2O was observed to increase with decreasing NO/NO2 ratios, owing to the decomposition of NH4NO3. The kinetic results showed that the fast SCR reaction exhibited a higher apparent activation energy (Ea=64.02 kJ·mol-1) than that of the standard SCR reaction (Ea=48.00 kJ·mol-1) over Cu/SAPO-34 catalyst. The results of in situ-DRIFTS showed that NO2 did not efficiently generate nitrate species on Cu2+ sites compared with NO, and that some nitrate species combined with NH4+ on Brønsted acid sites to generate NH4NO3. The inhibitory effect of NO2 at low temperatures is evidently caused by deposited NH4NO3 covering the active sites of Cu/SAPO-34 catalyst, while these NH4NO3 species can be reduced by NO or thermally decomposed as the temperature increases.
-
-
[1]
(1) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B: Environ. 1998, 18, 1. doi: 10.1016/S0926-3373(98)00040-X
-
[2]
(2) Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B: Environ. 2004, 51, 93. doi: 10.1016/j.apcatb.2004.01.023
-
[3]
(3) Liu, C. C.; Teng, H. Appl. Catal. B: Environ. 2005, 58, 69. doi: 10.1016/j.apcatb.2004.12.002
-
[4]
(4) Yan, J. Y.; Sachtler,W. M. H.; Kung, H. H. Catal. Today 1997, 33, 279. doi: 10.1016/S0920-5861(96)00100-9
-
[5]
(5) Sjövall, H.; Olsson, L.; Fridell, E.; Blint, R. J. Appl. Catal. B: Environ. 2006, 64, 180. doi: 10.1016/j.apcatb.2005.12.003
-
[6]
(6) Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2010, 275, 187. doi: 10.1016/j.jcat.2010.07.031
-
[7]
(7) Fickel, D.W.; D′Addio, E.; Lauterbacha, J. A.; Lobo, R. F. Appl. Catal. B: Environ. 2011, 102, 441. doi: 10.1016/j.apcatb.2010.12.022
-
[8]
(8) Bull, I.; Xue,W. M.; Burk, P.; Boorse, S. R.; Jaglowski,W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Dettling, J. C. Caudle, M. T. Copper CHA Zeolite Catalysts. US Patent 7601662, 2009.
-
[9]
(9) Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F. J. Catal. 2012, 287, 203. doi: 10.1016/j.jcat.2011.12.025
-
[10]
(10) Schmieg, S. J.; Oh, S. H.; Kim, C. H. Catal. Today 2012, 184, 252. doi: 10.1016/j.cattod.2011.10.034
-
[11]
(11) Fickel, D.W.; Lobo, R. F. J. Phys. Chem. C 2010, 114, 1633.
-
[12]
(12) Korhonen, S. T.; Fickel, D.W.; Lobo, R. F.;Weckhuysen, B. M.; Beale, A. M. Chem. Commun. 2010, 47, 800.
-
[13]
(13) Xue, J. J.;Wang, X. Q.; Qi, G. S.;Wang, J.; Shen, M. Q.; Li,W. J. Catal. 2013, 297, 56. doi: 10.1016/j.jcat.2012.09.020
-
[14]
(14) Fan, S. K.; Xue, J. J.; Yu, T.; Fan, D. Q. Catal. Sci. Technol. 2013, 3, 2357. doi: 10.1039/c3cy00267e
-
[15]
(15) Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R. Catal. Rev. -Sci. Eng. 2008, 50, 492. doi: 10.1080/01614940802480122
-
[16]
(16) Rahkamaa-Tolonen, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. Catal. Today 2005, 100, 217. doi: 10.1016/j.cattod.2004.09.056
-
[17]
(17) Devadas, M.; Kröcher, O.; Elsener, M.;Wokaun, A.; Söger, N.; Pfeifer, M.; Demel, Y.; Mussmann, L. Appl. Catal. B: Environ. 2006, 67, 187. doi: 10.1016/j.apcatb.2006.04.015
-
[18]
(18) Grossale, A.; Nova, I.; Tronconi, E. Catal. Today 2008, 136, 18. doi: 10.1016/j.cattod.2007.10.117
-
[19]
(19) Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.;Weibel, M. J. Catal. 2008, 256, 312. doi: 10.1016/j.jcat.2008.03.027
-
[20]
(20) Grossale, A.; Nova, I.; Tronconi, E. J. Catal. 2009, 265, 141. doi: 10.1016/j.jcat.2009.04.014
-
[21]
(21) Iwasaki, M.; Shinjoh, H. Appl. Catal. A: Gen. 2010, 390, 71. doi: 10.1016/j.apcata.2010.09.034
-
[22]
(22) Shi, X. Y.; Liu, F. D.; Xie, L. J.; Shan,W. P.; He, H. Environ. Sci. Technol. 2013, 47, 3293
-
[23]
(23) Sjovall, H.; Olsson, L.; Fridell, E.; Blint, R. J. Appl. Catal. B: Environ. 2006, 64, 180. doi: 10.1016/j.apcatb.2005.12.003
-
[24]
(24) Colombo, M.; Nova, I.; Tronconi, E. Catal. Today 2010, 151, 223. doi: 10.1016/j.cattod.2010.01.010
-
[25]
(25) Xie, L. J.; Liu, F. D.; Liu, K.; Shi, X. Y.; He, H. Catal. Sci. Technol. 2014, 4, 1104. doi: 10.1039/c3cy00924f
-
[26]
(26) Buchholz, A.;Wang,W.; Xu, M.; Arnold, A.; Hunger, M. Microporous Mesoporous Mat. 2002, 56, 267. doi: 10.1016/S1387-1811(02)00491-2
-
[27]
(27) Xu, L.; Du, A.;Wei, Y.;Wang, Y.; Yu, Z.; He, Y.; Zhang, X.; Liu, Z. Microporous Mesoporous Mat. 2008, 115, 332. doi: 10.1016/j.micromeso.2008.02.001
-
[28]
(28) Tan, J.; Liu, Z.; Bao, X.; Liu, X.; Han, X. Microporous Mesoporous Mat. 2002, 53, 97. doi: 10.1016/S1387-1811(02)00329-3
-
[29]
(29) Martins, G. V. A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H. O.; Marchese, L. J. Phys. Chem. C 2008, 112, 7193. doi: 10.1021/jp710613q
-
[30]
(30) Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. Chem. Eng. J. 2013, 225, 323 doi: 10.1016/j.cej.2013.03.078
-
[31]
(31) Onida, B.; Gabelica, Z.; Lourencüo, J.; Garrone, E. J. Phys. Chem. 1996, 100, 11072. doi: 10.1021/jp9600874
-
[32]
(32) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117. doi: 10.1016/0920-5861(95)00289-8
-
[33]
(33) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl. Catal. B: Environ. 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8
-
[34]
(34) Adelman, B. J.; Beutel, T.; Lei, G. D.; Sachtler,W. M. H. J. Catal. 1996, 158, 327. doi: 10.1006/jcat.1996.0031
-
[35]
(35) Wang, D.; Zhang, L.; Kamasamudram, K.; Epling,W. S. ACS Catal. 2013, 3, 871. doi: 10.1021/cs300843k
-
[36]
(36) Sjövall, H.; Fridell, E.; Blint, R. J.; Olsson, L. Top Catal. 2007, 42, 113.
-
[37]
(37) Qi, G. S.; Yang, R. T. J. Phys. Chem. B 2004, 108, 15738. doi: 10.1021/jp048431h
-
[38]
(38) Trovarelli, A. Catal. Rev. -Sci. Eng. 1996, 38, 439. doi: 10.1080/01614949608006464
-
[39]
(39) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117. doi: 10.1016/0920-5861(95)00289-8
-
[40]
(40) Konduru, M. V.; Chuang, S. S. C. J. Catal. 2000, 196, 271. doi: 10.1006/jcat.2000.3046
-
[41]
(41) Fanning, P. E.; Vannice, M. A. J. Catal. 2002, 207, 166. doi: 10.1006/jcat.2002.3518
-
[42]
(42) Lei, G. D.; Adelman, B. J.; Sárkány, J.; Sachtler,W. M. H. Appl. Catal. B: Environ. 1995, 5, 245. doi: 10.1016/0926-3373(94)00043-3
-
[43]
(43) Hadjiivanov, K. I. Catal. Rev. -Sci. Eng. 2000, 42, 71. doi: 10.1081/CR-100100260
-
[44]
(44) Ivanova, E.; Hadjiivanov, K.; Klissurski, D.; Bevilacqua, M.; Armaroli, T.; Busca, G. Microporous Mesoporous Mat. 2001, 46, 299. doi: 10.1016/S1387-1811(01)00311-0
-
[45]
(45) Shi, L.; Yu, T.;Wang, X. Q.;Wang, J.; Shen, M. Q. Acta Phys. -Chim. Sin. 2013, 29, 1550. [石琳, 于铁, 王欣全, 王军, 沈美庆. 物理化学学报, 2013, 29, 1550.] doi: 10.3866/PKU.WHXB201304283
-
[46]
(46) Liu, Y.; Gao, Z. Acta Petrol Sin. Pet. Process Section 1996, 12, 35. [刘毅, 高滋. 石油学报: 石油加工, 1996, 12, 35.]
-
[47]
(47) Lok, B. M.; Messina, C. A.; Patton, R. L.; Gajek, R. T.; Cannon, T. R.; Flanigen, E. M. Crystalline Silicoaluminophosphates. US Patent 4440871, 1984.
-
[1]
-
-
[1]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[2]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[3]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[6]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[7]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[8]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[9]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[14]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[15]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[16]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[17]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[18]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[19]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[20]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[1]
Metrics
- PDF Downloads(781)
- Abstract views(641)
- HTML views(50)