Citation:
SHEN Ai-Jing, DUAN Yuan-Yuan, YANG Zhen. pVT Properties of Alkanes Using Crossover VTSRK Equation of State[J]. Acta Physico-Chimica Sinica,
;2014, 30(8): 1426-1431.
doi:
10.3866/PKU.WHXB201405231
-
Accurate predictions of the pVT properties of alkanes are very important since they are associated with many fundamental aspects in energy, power engineering, and chemical engineering fields. Predicting the properties of alkanes in the critical region, however, remains challenging. In this work, a crossover volume translation Soave-Redlich-Kwong (SRK) equation of state (EoS) was developed for C1 to C20 alkanes, in which volume translation and crossover methods were combined to improve the description of saturated liquid densities and thermodynamic properties in the critical region. The parameters of the crossover equation are set as constants or expressed as functions of critical parameters and the acentric factor. Comparisons showed that the average deviations of the crossover volume translation SRK equation results for C1 to C20 alkanes were 1.01% for vapor pressure, 1.83% for saturated vapor density, and 0.93% for saturated liquid density, and these deviations are much lower than those obtained with the SRK equation of state. In addition, prediction results for properties in the single phase region and the critical region from the crossover equation were in better agreement with experimental data than those from the SRK equation. The crossover volume translation SRK equation was also extended to the pVT properties of cycloalkanes (cyclopropane, cyclopentane, and cyclohexane), benzene and toluene. The prediction results were also satisfactory, demonstrating the superior predictive ability of the crossover equation of state.
-
-
-
[1]
(1) Meng, X. Z.; Jia, M.;Wang, T. Y. Fuel 2013, 111, 216. doi: 10.1016/j.fuel.2013.04.050
-
[2]
(2) Sisti, J.; DesJardin, P. E. Combust. Theor. Model. 2013, 17 (4), 657. doi: 10.1080/13647830.2013.791725
-
[3]
(3) Li, L. Y.; Sun, F. F.; Chen, Z. T.; Cai, J. Acta Phys. -Chim. Sin. 2013, 29 (11), 2332. [李丽妍, 孙方方, 陈志同, 蔡钧. 物理化学学报, 2013, 29 (11), 2332.] doi: 10.3866/PKU.WHXB201307311
-
[4]
(4) Singla, G.; Scouflaire, P.; Rolon, C.; Candel, S. P. Combust. Inst. 2005, 30, 2921. doi: 10.1016/j.proci.2004.08.063
-
[5]
(5) Soave, G. Chem. Eng. Sci. 1972, 27 (6), 1197. doi: 10.1016/0009-2509(72)80096-4
-
[6]
(6) Peng, D.; Robinson, D. B. Ind. Eng. Chem. Fundamen. 1976, 15 (1), 59. doi: 10.1021/i160057a011
-
[7]
(7) Buecker, D.;Wagner,W. J. Phys. Chem. Ref. Data 2006, 35 (2), 929. doi: 10.1063/1.1901687
-
[8]
(8) Martin, J. J. Ind. Eng. Chem. 1967, 59 (12), 34. doi: 10.1021/ie50696a008
-
[9]
(9) Peneloux, A.; Rauzy, E.; Freze, R. Fluid Phase Equilib. 1982, 8 (1), 7. doi: 10.1016/0378-3812(82)80002-2
-
[10]
(10) Lin, H.; Duan, Y. Y. Fluid Phase Equilib. 2005, 233 (2), 194. doi: 10.1016/j.fluid.2005.05.008
-
[11]
(11) Lin, H.; Duan, Y. Y.; Zhang, T.; Huang, Z. M. Ind. Eng. Chem. Res. 2006, 45 (5), 1829. doi: 10.1021/ie051058v
-
[12]
(12) Ji,W. R.; Lempe, D. A. Fluid Phase Equilib. 1997, 130 (1-2), 49. doi: 10.1016/S0378-3812(96)03190-1
-
[13]
(13) Pfohl, O. Fluid Phase Equilib. 1999, 163 (1), 157. doi: 10.1016/S0378-3812(99)00199-5
-
[14]
(14) Yelash, L. V.; Kraska, T. AIChE J. 2003, 49 (6), 1569. doi: 10.1002/aic.690490620
-
[15]
(15) Chapela, G. A.; Rowlinso, J. S. J. Chem. Soc . Faraday Trans I 1974, 70, 584.
-
[16]
(16) Fox, J. R. Fluid Phase Equilib. 1983, 14, 45.
-
[17]
(17) Salvino, L.W.; White, J. A. J. Chem. Phys. 1992, 96 (6), 4559. doi: 10.1063/1.462791
-
[18]
(18) Kiselev, S. B. Fluid Phase Equilib. 1998, 147 (1-2), 7. doi: 10.1016/S0378-3812(98)00222-2
-
[19]
(19) Kiselev, S. B.; Ely, J. F. Fluid Phase Equilib. 2004, 222, 149.
-
[20]
(20) Kiselev, S. B.; Ely, J. F. Fluid. Phase Equilib. 2007, 252 (1-2), 57. doi: 10.1016/j.fluid.2006.10.028
-
[21]
(21) Kiselev, S. B.; Ely, J. F. Ind. Eng. Chem. Res. 1999, 38 (12), 4993. doi: 10.1021/ie990387i
-
[22]
(22) Xu, X. H.; Duan, Y. Y.; Yang, Z. Ind. Eng. Chem. Res. 2012, 51 (18), 6580. doi: 10.1021/ie300112j
-
[23]
(23) Sengers, J. V.; Shanks, J. G. J. Stat. Phys. 2009, 137 (5-6), 857. doi: 10.1007/s10955-009-9840-z
-
[24]
(24) Kiselev, S. B.; Ely, J. F. Chem. Eng. Sci. 2006, 61 (15), 5107. doi: 10.1016/j.ces.2006.03.044
-
[25]
(25) Hu, Z. Q.; Yang, J. C.; Li, Y. G. Fluid Phase Equilib. 2003, 205 (1), 25. doi: 10.1016/S0378-3812(02)00307-2
-
[26]
(26) Kiselev, S. B.; Ely, J. F. J. Phys. Chem. C 2007, 111 (43), 15969. doi: 10.1021/jp073706p
-
[27]
(27) Lemmon, E.W.; Huber, M. L.; McLinden, M. O. NIST Standard Reference Database 23 : Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.0; Gaithersburg: National Institute of Standards and Technology, 2010.
-
[28]
(28) DIPPR Thermophysical Properties Laboratory 350CB, DIPPR Project 801 Evaluated Process Design Data; Brigham Young University: Provo, UT 84602, 2010.
-
[1]
-
-
-
[1]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[2]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[3]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[4]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[5]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[6]
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
-
[7]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[8]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[9]
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
-
[10]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[11]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[12]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[13]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[14]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[15]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[16]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[17]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087
-
[20]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[1]
Metrics
- PDF Downloads(454)
- Abstract views(750)
- HTML views(25)