Citation: SHEN Ai-Jing, DUAN Yuan-Yuan, YANG Zhen. pVT Properties of Alkanes Using Crossover VTSRK Equation of State[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1426-1431. doi: 10.3866/PKU.WHXB201405231
-
Accurate predictions of the pVT properties of alkanes are very important since they are associated with many fundamental aspects in energy, power engineering, and chemical engineering fields. Predicting the properties of alkanes in the critical region, however, remains challenging. In this work, a crossover volume translation Soave-Redlich-Kwong (SRK) equation of state (EoS) was developed for C1 to C20 alkanes, in which volume translation and crossover methods were combined to improve the description of saturated liquid densities and thermodynamic properties in the critical region. The parameters of the crossover equation are set as constants or expressed as functions of critical parameters and the acentric factor. Comparisons showed that the average deviations of the crossover volume translation SRK equation results for C1 to C20 alkanes were 1.01% for vapor pressure, 1.83% for saturated vapor density, and 0.93% for saturated liquid density, and these deviations are much lower than those obtained with the SRK equation of state. In addition, prediction results for properties in the single phase region and the critical region from the crossover equation were in better agreement with experimental data than those from the SRK equation. The crossover volume translation SRK equation was also extended to the pVT properties of cycloalkanes (cyclopropane, cyclopentane, and cyclohexane), benzene and toluene. The prediction results were also satisfactory, demonstrating the superior predictive ability of the crossover equation of state.
-
-
[1]
(1) Meng, X. Z.; Jia, M.;Wang, T. Y. Fuel 2013, 111, 216. doi: 10.1016/j.fuel.2013.04.050
-
[2]
(2) Sisti, J.; DesJardin, P. E. Combust. Theor. Model. 2013, 17 (4), 657. doi: 10.1080/13647830.2013.791725
-
[3]
(3) Li, L. Y.; Sun, F. F.; Chen, Z. T.; Cai, J. Acta Phys. -Chim. Sin. 2013, 29 (11), 2332. [李丽妍, 孙方方, 陈志同, 蔡钧. 物理化学学报, 2013, 29 (11), 2332.] doi: 10.3866/PKU.WHXB201307311
-
[4]
(4) Singla, G.; Scouflaire, P.; Rolon, C.; Candel, S. P. Combust. Inst. 2005, 30, 2921. doi: 10.1016/j.proci.2004.08.063
-
[5]
(5) Soave, G. Chem. Eng. Sci. 1972, 27 (6), 1197. doi: 10.1016/0009-2509(72)80096-4
-
[6]
(6) Peng, D.; Robinson, D. B. Ind. Eng. Chem. Fundamen. 1976, 15 (1), 59. doi: 10.1021/i160057a011
-
[7]
(7) Buecker, D.;Wagner,W. J. Phys. Chem. Ref. Data 2006, 35 (2), 929. doi: 10.1063/1.1901687
-
[8]
(8) Martin, J. J. Ind. Eng. Chem. 1967, 59 (12), 34. doi: 10.1021/ie50696a008
-
[9]
(9) Peneloux, A.; Rauzy, E.; Freze, R. Fluid Phase Equilib. 1982, 8 (1), 7. doi: 10.1016/0378-3812(82)80002-2
-
[10]
(10) Lin, H.; Duan, Y. Y. Fluid Phase Equilib. 2005, 233 (2), 194. doi: 10.1016/j.fluid.2005.05.008
-
[11]
(11) Lin, H.; Duan, Y. Y.; Zhang, T.; Huang, Z. M. Ind. Eng. Chem. Res. 2006, 45 (5), 1829. doi: 10.1021/ie051058v
-
[12]
(12) Ji,W. R.; Lempe, D. A. Fluid Phase Equilib. 1997, 130 (1-2), 49. doi: 10.1016/S0378-3812(96)03190-1
-
[13]
(13) Pfohl, O. Fluid Phase Equilib. 1999, 163 (1), 157. doi: 10.1016/S0378-3812(99)00199-5
-
[14]
(14) Yelash, L. V.; Kraska, T. AIChE J. 2003, 49 (6), 1569. doi: 10.1002/aic.690490620
-
[15]
(15) Chapela, G. A.; Rowlinso, J. S. J. Chem. Soc . Faraday Trans I 1974, 70, 584.
-
[16]
(16) Fox, J. R. Fluid Phase Equilib. 1983, 14, 45.
-
[17]
(17) Salvino, L.W.; White, J. A. J. Chem. Phys. 1992, 96 (6), 4559. doi: 10.1063/1.462791
-
[18]
(18) Kiselev, S. B. Fluid Phase Equilib. 1998, 147 (1-2), 7. doi: 10.1016/S0378-3812(98)00222-2
-
[19]
(19) Kiselev, S. B.; Ely, J. F. Fluid Phase Equilib. 2004, 222, 149.
-
[20]
(20) Kiselev, S. B.; Ely, J. F. Fluid. Phase Equilib. 2007, 252 (1-2), 57. doi: 10.1016/j.fluid.2006.10.028
-
[21]
(21) Kiselev, S. B.; Ely, J. F. Ind. Eng. Chem. Res. 1999, 38 (12), 4993. doi: 10.1021/ie990387i
-
[22]
(22) Xu, X. H.; Duan, Y. Y.; Yang, Z. Ind. Eng. Chem. Res. 2012, 51 (18), 6580. doi: 10.1021/ie300112j
-
[23]
(23) Sengers, J. V.; Shanks, J. G. J. Stat. Phys. 2009, 137 (5-6), 857. doi: 10.1007/s10955-009-9840-z
-
[24]
(24) Kiselev, S. B.; Ely, J. F. Chem. Eng. Sci. 2006, 61 (15), 5107. doi: 10.1016/j.ces.2006.03.044
-
[25]
(25) Hu, Z. Q.; Yang, J. C.; Li, Y. G. Fluid Phase Equilib. 2003, 205 (1), 25. doi: 10.1016/S0378-3812(02)00307-2
-
[26]
(26) Kiselev, S. B.; Ely, J. F. J. Phys. Chem. C 2007, 111 (43), 15969. doi: 10.1021/jp073706p
-
[27]
(27) Lemmon, E.W.; Huber, M. L.; McLinden, M. O. NIST Standard Reference Database 23 : Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.0; Gaithersburg: National Institute of Standards and Technology, 2010.
-
[28]
(28) DIPPR Thermophysical Properties Laboratory 350CB, DIPPR Project 801 Evaluated Process Design Data; Brigham Young University: Provo, UT 84602, 2010.
-
[1]
-
-
[1]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[2]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[3]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[4]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[5]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[6]
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
-
[7]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[8]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[9]
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
-
[10]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[13]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[14]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[15]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[16]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[17]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[18]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[1]
Metrics
- PDF Downloads(454)
- Abstract views(685)
- HTML views(10)