Citation: ZHAO Qiao, LU Dan-Feng, LIU De-Long, CHEN Chen, HU De-Bo, QI Zhi-Mei. Study of Total Internal Reflection SERS Based on Self-Assembled ld Nanoparticle Monolayer Film[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1201-1207. doi: 10.3866/PKU.WHXB201405191 shu

Study of Total Internal Reflection SERS Based on Self-Assembled ld Nanoparticle Monolayer Film

  • Received Date: 17 March 2014
    Available Online: 19 May 2014

    Fund Project:

  • Two types of Surface Enhanced Raman Scattering (SERS) substrates were prepared by selfassembly of ld nanoparticle (GNP) monolayers film on either bare glass substrates (glass/GNP) or glass substrates with a 30 nm thick ld film (glass/Au/GNP). SERS spectra of dye molecules adsorbed on the two substrates were obtained by total internal reflection (TIR) of an excitation laser beam combined with collection of the air-side signal. The experimental results demonstrated that the signal enhancement factors of the two SERS substrates greatly depend on the polarization state of the excitation beam. In the case of the glass/GNP substrate, the signal enhancement factor obtained with the s-polarization TIR is two to five times as higher as that observed with the p-polarization TIR, indicating the formation of“hot spots”between adjacent particles in the GNP monolayer. With the glass/Au/GNP substrate, the SERS signal can be excited only by p-polarization TIR at a specific reflection angle, and the air-side SERS signal is almost 30 times that obtained with the glass/GNP substrate. The findings suggest that significant field enhancement is induced by the coupling between propagating surface plasmon resonance (SPR) and the localized SPR within the glass/Au/GNP substrate. Using a linear polarizer, the air-side SERS signal was verified to be non-polarized, containing s and p components of almost equal intensities. Further investigations revealed that the glass/Au/GNP substrate allows for directional emission of the SERS signal with the p-polarization state.

  • 加载中
    1. [1]

      (1) Gadenne, P.; Quelin, X. Physica B 2000, 279, 52. doi: 10.1016/S0921-4526(99)00665-1

    2. [2]

      (2) Luo, Z. X.; Fang, Y. Spectrosc. Spec. Anal. 2006, 26, 358. [骆智训, 方炎. 光谱学与光谱分析, 2006, 26, 358.]

    3. [3]

      (3) Sun, L.; Bai, F. Q.; Zhang, H. X. Acta Phys. -Chim. Sin. 2011, 27, 1335. [孙磊, 白福全, 张红星. 物理化学学报, 2011, 27, 1335.] doi: 10.3866/PKU.WHXB20110602

    4. [4]

      (4) Pettinger, B. Adsorption at Electrode Surface; VCH: New York, 1992; p 285.

    5. [5]

      (5) Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Chem. Phys. Lett. 1974, 26 (2), 163. doi: 10.1016/0009-2614(74)85388-1

    6. [6]

      (6) Liu, H.W.; Zhang, L.; Lang, X. Y.; Yoshinori, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M.W. Sci. Rep. 2011, 1, 1.

    7. [7]

      (7) Carlos, J. L. C.; Tibebe, L.; Patricia, A. A.; Ricardo, A. Anal. Chem. 2001, 73, 3674. doi: 10.1021/ac0101961

    8. [8]

      (8) Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R.; Ertl, G. Phys. Rev. Lett. 2004, 92, 096103. doi: 10.1103/PhysRevLett.92.096103

    9. [9]

      (9) Stockle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318, 135.

    10. [10]

      (10) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang,W.; Zhou, Z. Y.;Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 393.

    11. [11]

      (11) Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. doi: 10.1103/RevModPhys.57.783

    12. [12]

      (12) Wang, J.; Zhu, T.; Fu, X. Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 1998, 14, 485. [王健, 朱涛, 符小艺, 刘忠范. 物理化学学报, 1998, 14, 485.] doi: 10.3866/PKU.WHXB19980602

    13. [13]

      (13) Ding, S. Y.;Wu, D. Y.; Yang, Z. L.; Ren, B.; Xu, X.; Tian, Z. Q. Chem. J. Chin. Univ. 2008, 29, 2570. [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群. 高等学校化学学报, 2008, 29, 2570.]

    14. [14]

      (14) McKee, K. J. Scanning Angle Total Internal Reflection Raman Spectroscopy and Plasmon Enhancement Techniques as a Tool for Interfacial Analysis. Ph. D. Dissertation, Iowa State University, Ames, 2012.

    15. [15]

      (15) Woods, D. A.; Bain, C. D. Analyst 2012, 137, 35.  doi: 10.1039/c1an15722a

    16. [16]

      (16) Meyer, S. A.; Ru, E. C. L.; Etche in, P. G. Anal. Chem. 2011, 83, 2337. doi: 10.1021/ac103273r

    17. [17]

      (17) Futamata, M. J. Phys. Chem. 1995, 99, 11901. doi: 10.1021/j100031a018

    18. [18]

      (18) Li, H. B.; Xu, S. P.; Liu, Y.; Fu, C. C.; Xuan, X. Y.;Wang, X. N. Wang, H. L.; Zhou, J.; Xu,W. Q. Scientia Sinica Chimica 2013, 43, 1669. [李海波, 徐抒平, 刘钰, 付翠翠, 宣旭阳, 王馨楠, 王海龙, 周吉, 徐蔚青. 中国科学: 化学, 2013, 43, 1669.] doi: 10.1360/032013-225

    19. [19]

      (19) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312. doi: 10.1126/science.1962191

    20. [20]

      (20) Zhang, R. J.; Qi, Z. M.; Zhang, Z. Acta Phys. -Chim. Sin. 2011, 27, 1757. [张蓉君, 祁志美, 张喆. 物理化学学报, 2011, 27, 1757.] doi: 10.3866/PKU.WHXB20110716

    21. [21]

      (21) Born, M.;Wolf, E. Principle of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ; Electronics Industry: Beijing, 2009; pp 34-59; Translated by Yang, J. S. [Born, M.;Wolf, E. 光学原理:光的传播、干涉和衍射的电磁理论. 杨葭荪, 译. 北京: 电子工业出版社, 2009: 34-59.]

    22. [22]

      (22) Felidj, N.; Aubard, J.; Levi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. Appl. Phys. Lett. 2003, 82, 3097.

    23. [23]

      (23) Zhang, J.; Zhu, T.; Zhang, X.; Liu, Z. F. Acta Phys. -Chim. Sin. 1999, 15, 477. [张健, 朱涛, 张续, 刘忠范. 物理化学学报, 1999, 15, 477.] doi: 10.3866/PKU.WHXB19990518

    24. [24]

      (24) Wei, H.; Xu, H. X. Sci. China Phys. Mech. 2010, 40, 5. [魏红, 徐红星. 中国科学: 物理学力学天文学, 2010, 40, 5.]

    25. [25]

      (25) Tong, L. M.; Xu, H. X. Physics 2012, 41 (9), 584. [童利民, 徐红星. 物理, 2012, 41 (9), 584.]

    26. [26]

      (26) Kretschmann, E. Z. Physics 1971, 241 (4), 313. doi: 10.1007/BF01395428

    27. [27]

      (27) Li, Z. P.; Hao, F.; Huang, Y. Z.; Fang, Y. R.; Nordlander, P.; Xu, H. X. Nano Lett. 2009, 9 (12), 4383. doi: 10.1021/nl902651e


  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    20. [20]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

Metrics
  • PDF Downloads(706)
  • Abstract views(640)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return