Citation:
BAI Shu, CHANG Ying, LIU Xiao-Juan, LIU Fu-Feng. Interactions between Trehalose and Amino Acids by Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica,
;2014, 30(7): 1239-1246.
doi:
10.3866/PKU.WHXB201405151
-
Although trehalose is used as a protein stabilizer, the mechanism by which this stability is induced is not fully understood at present. In this study, we investigated the interactions between trehalose and all 20 common amino acids using all-atom molecular dynamics simulations. It is found that all the amino acids exhibit a preference for contact with water, especially the polar and charged amino acids. Conversely, only the hydrophobic amino acids were found to have a slight preference for contact with trehalose molecules. This tendency is most pronounced in the case of contact between trehalose and aromatic or hydrophobic side chains, whereas the backbones of each amino acids all show similar propensities for contact with water. Furthermore, hydrogen bonds between amino acids and trehalose were found to be significantly weaker than those between amino acids and water, although both trehalose and water can interact with the amino acids via hydrogen bonds. These findings are important with regard to the exploration of the molecular mechanism of protein stability induced by trehalose and the rational design of highly efficient protein stabilizers.
-
-
-
[1]
(1) Richards, A. B.; Krakowka, S.; Dexter, L. B.; Schmid, H.; Wolterbeek, A. P.;Waalkens-Berendsen, D. H.; Shi yuki, A.; Kurimoto, M. Food Chem. Toxicol. 2002, 40, 871. doi: 10.1016/S0278-6915(02)00011-X
-
[2]
(2) Singer, M. A.; Lindquist, S. Trends Biotechnol. 1998, 16, 460. doi: 10.1016/S0167-7799(98)01251-7
-
[3]
(3) Crowe, J. H.; Crowe, L. M.; Carpenter, J. F.;Wistrom, A. C. Biochem. J. 1987, 242, 1.
-
[4]
(4) Ohtake, S.;Wang, Y. J. J. Pharm. Sci. 2011, 100, 2020. doi: 10.1002/jps.22458
-
[5]
(5) Zhang, N.; Liu, F. F.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B 2012, 116, 7040. doi: 10.1021/jp300171h
-
[6]
(6) Zhang, N.; Liu, F. F.; Dong, X. Y.; Sun, Y. Biochem. Eng. J. 2013, 70, 188. doi: 10.1016/j.bej.2012.11.004
-
[7]
(7) Liu, F. F.; Ji, L.; Zhang, L.; Dong, X. Y.; Sun, Y. J. Chem. Phys. 2010, 132, 225103. doi: 10.1063/1.3453713
-
[8]
(8) Liu, F. F.; Ji, L.; Dong, X. Y. Acta Phys. -Chim. Sin. 2010, 26, 2813. [刘夫锋, 纪络, 董晓燕. 物理化学学报, 2010, 26, 2813.]
-
[9]
(9) Zhang, N.; Liu, F. F.; Dong, X. Y.; Sun, Y. Biochem. Eng. J. 2013, 79, 120. doi: 10.1016/j.bej.2013.07.007
-
[10]
(10) Dong, X. Y.; Liu, J. H.; Liu, F. F.; Sun, Y. Biochem. Eng. J. 2009, 43, 321. doi: 10.1016/j.bej.2008.10.015
-
[11]
(11) Liu, F. F.; Ji, L.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B 2009, 113, 11320. doi: 10.1021/jp905580j
-
[12]
(12) Liu, F. F.; Dong, X. Y.; Sun, Y. Acta Phys. -Chim. Sin. 2010, 26, 1643. [刘夫锋, 董晓燕, 孙彦. 物理化学学报, 2010, 26, 1643.]
-
[13]
(13) Bolen, D.W.; Rose, G. D. Annu. Rev. Biochem. 2008, 77, 339. doi: 10.1146/annurev.biochem.77.061306.131357
-
[14]
(14) Lins, R. D.; Pereira, C. S.; Hunenberger, P. H. Proteins 2004, 55, 177. doi: 10.1002/prot.10632
-
[15]
(15) Ansari, A.; Jones, C. M.; Henry, E. R.; Hofrichter, J.; Eaton,W. A. Science 1992, 256, 1796. doi: 10.1126/science.1615323
-
[16]
(16) Allison, S. D.; Chang, B.; Randolph, T.W.; Carpenter, J. F. Arch. Biochem. Biophys. 1999, 365, 289. doi: 10.1006/abbi.1999.1175
-
[17]
(17) Lins, R. D.; Hunenberger, P. H. J. Comput. Chem. 2005, 26, 1400. doi: 10.1002/jcc.20275
-
[18]
(18) Liu, F. F.; Dong, X. Y.; Sun, Y. J. Mol. Graph. Model. 2008, 27, 421. doi: 10.1016/j.jmgm.2008.07.002
-
[19]
(19) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
-
[20]
(20) Berendsen, H. J. C.; Postma, J. P. M.; van gunsteren,W. F.; Hermans, J. In Intermolecular Forces; Pullman, B. Ed.; Reidel: Dordecht, Holland, 1981; pp 331.
-
[21]
(21) van gunsteren,W. F.; Billeter, S. R.; Eising, A. A.; Hunenberger, P. H.; Mark, A. E.; Scott,W. R. P.; Tironi, I. G. Biomolecular Simulation : The GROMOS96 Manual and User Guide; Zurich: Groninigen, 1996.
-
[22]
(22) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
-
[23]
(23) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. doi: 10.1063/1.464397
-
[24]
(24) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren,W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. doi: 10.1063/1.448118
-
[25]
(25) Liu, F. F.; Dong, X. Y.;Wang, T.; Sun, Y. J. Chromatogr. A 2007, 1175, 249. doi: 10.1016/j.chroma.2007.10.074
-
[26]
(26) Stumpe, M. C.; Grubmuller, H. J. Am. Chem. Soc. 2007, 129, 16126. doi: 10.1021/ja076216j
-
[27]
(27) Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Schlag, E.W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 12683. doi: 10.1073/ pnas.2133366100
-
[28]
(28) Jenkins, S.; Morrison, I. Chem. Phys. Lett. 2000, 317, 97. doi: 10.1016/S0009-2614(99)01306-8
-
[29]
(29) Li,W.; Qin, M.; Tie, Z.;Wang,W. Phys. Rev. E 2011, 84, 041933. doi: 10.1103/PhysRevE.84.041933
-
[30]
(30) Li,W.; Zhang, J.;Wang, J.;Wang,W. J. Am. Chem. Soc. 2008, 130, 892. doi: 10.1021/ja075302g
-
[31]
(31) Lei, H.; Duan, Y. Curr. Opin. Struct. Biol. 2007, 17, 187. doi: 10.1016/j.sbi.2007.03.003
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[3]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[4]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[5]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[6]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[7]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[8]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[9]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[10]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[11]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[12]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[13]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[14]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[15]
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
-
[16]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[17]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[18]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[19]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[20]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[1]
Metrics
- PDF Downloads(724)
- Abstract views(590)
- HTML views(2)