Citation:
YU Huan, YANG Hui, YAO Rui, GUO Xing-Zhong. Preparation and Characterization of Ag Nanoparticles Embedded in Hierarchically Porous Monolithic Silica[J]. Acta Physico-Chimica Sinica,
;2014, 30(7): 1384-1390.
doi:
10.3866/PKU.WHXB201405122
-
Ag nanoparticles (NPs) were uniformly immobilized in hierarchically porous monolithic silica using γ-(aminopropyl)triethoxysilane (APTES) as a modifier and ethanol as a reductant, where the silica monolith was pre-prepared via the sol-gel accompanied by phase separation. Ag NPs embedded in the hierarchically porous silica monoliths were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), mercury porosimetry, nitrogen adsorption/desorption analysis, and X-ray photoelectron spectroscopy (XPS). The mechanism of the modification by APTES, the reduction using ethanol, and pore structure changes of the silica monolith after immobilization of Ag NPs are discussed. The results show that APTES modifies the monolith by incorporating amino groups onto the surface of the meso-macroporous skeletons, and then amino groups react with silver ions to form a silver-amine complex. Ethanol used as an effective reductant is adopted to promote the reduction process of the silver-amine complex. Ag NPs with an average size of approximately 16 nm were homogeneously supported on both the macroporous skeletons and in the mesopores of the silica monolith with od dispersion. The embedding of Ag NPs did not spoil the macroporous skeleton of the monolithic silica, and the surface area decreased from 418 to 254 m2 ·g-1 after introducing Ag NPs into its macromesopores. It was also found that the loading amount of Ag NPs increased with repeated modification and reduction treatments.
-
-
-
[1]
(1) Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D. H.; Haynes, J. H.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S.W.; Unger, K. K. Pure Appl. Chem. 1994, 8, 66.
-
[2]
(2) Gates, B.; Yin, Y. D.; Xia, Y. N. Chem. Mater. 1999, 11, 2827. doi: 10.1021/cm990195d
-
[3]
(3) Kato, M.; Sakai-Kato, K.; Toyo'oka, T. J. Sep. Sci. 2005, 28, 1893.
-
[4]
(4) Nakanishi, K.; Tanaka, N. Accounts Chem. Res. 2007, 40, 863. doi: 10.1021/ar600034p
-
[5]
(5) Svec, F.; Huber, C. G. Anal. Chem. 2006, 78, 2101.
-
[6]
(6) Wu, P. G.; Xie, P. C.; Imlay, K.; Shang, J. K. J. Am. Ceram. Soc. 2009, 92, 1648. doi: 10.1111/jace.2009.92.issue-8
-
[7]
(7) Khimich, G. N.; Rakhmatullina, E. N.; Slabospitskaya, Y. M.; Tennikova, T. B. Russ. J. Appl. Chem. 2005, 78, 617.
-
[8]
(8) Nishihara, H.; Iwamura, S.; Kyotani, T. J. Mater. Chem. 2008, 18, 3662. doi: 10.1039/b806005c
-
[9]
(9) Yuan, X. Y.; Xu, S.; Lü, J.W.; Yan, X. B.; Hu, L. T.; Xue, Q. J. Microporous Mesoporous Mat. 2011, 138, 40. doi: 10.1016/j.micromeso.2010.09.033
-
[10]
(10) Deng, Q. L.; Li, Y. L.; Zhang, L. H.; Zhang, Y. K. Chin. Chem. Lett. 2011, 22, 1351. doi: 10.1016/j.cclet.2011.05.044
-
[11]
(11) Nakanishi, K. J. Porous Mater. 1997, 4, 67. doi: 10.1023/A:1009627216939
-
[12]
(12) Jinnai, H.; Nakanishi, K.; Nishikawa, Y.; Yamanaka, J.; Hashimoto, T. Langmuir 2001, 17, 619. doi: 10.1021/la000949z
-
[13]
(13) Amatani, T.; Nakanishi, K.; Hirao, K.; Kodaira, T. Chem. Mater. 2005, 17, 2114. doi: 10.1021/cm048091c
-
[14]
(14) Li,W. Y.; Guo, X. Z.; Zhu, Y.; Yang, H.; Kanamori, K.; Nakanishi, K. J. Sol-Gel Sci. Technol. 2013, 67, 639. doi: 10.1007/s10971-013-3123-5
-
[15]
(15) Guo, X. Z.; Li,W. Y.; Yang, H.; Kanamori, K.; Zhu, Y.; Nakanishi, K. J. Sol-Gel Sci. Technol. 2013, 67, 406. doi: 10.1007/s10971-013-3094-6
-
[16]
(16) Nakanishi, K. Bull. Chem. Soc. Jpn. 2006, 79, 673. doi: 10.1246/bcsj.79.673
-
[17]
(17) Kanamori, K. J. Ceram. Soc. Jpn. 2012, 120, 1. doi: 10.2109/jcersj2.120.1
-
[18]
(18) Guo, X. Z.; Li,W. Y.; Nakanishi, K.; Kanamori, K.; Zhu, Y.; Yang, H. J. Eur. Ceram. Soc. 2013, 33, 1967. doi: 10.1016/j.jeurceramsoc.2013.02.018
-
[19]
(19) Guo, X. Z.; Nakanishi, K.; Kanamori, K.; Zhu, Y.; Yang, H. J. Eur. Ceram. Soc. 2014, 34, 817. doi: 10.1016/j.jeurceramsoc.2013.08.016
-
[20]
(20) Yuan, Z. Y.; Su, B. L. J. Mater. Chem. 2006, 16, 663. doi: 10.1039/b512304f
-
[21]
(21) Ahmed, A.; Myers, P.; Zhang, H. F. Anal. Methods 2012, 4, 3942. doi: 10.1039/c2ay25671a
-
[22]
(22) Tang, S.;Wang, L. C.; Han, H. F.; Qiu, H. D.; Liu, X.; Jiang, S. X. Rsc Advances 2013, 3, 7894. doi: 10.1039/c3ra40580j
-
[23]
(23) Akhavan1, O.; Azimirad, R.; Moshfegh, A. Z. J. Phys. D: Appl. Phys. 2008, 41, 1. doi: 10.1051/epjap:2007176
-
[24]
(24) Liu, J. H.;Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 40.
-
[25]
(25) Dorjnamjin, D.; Ariunaa, M.; Shim, Y. K. Int. J. Mol. Sci. 2008, 9, 807. doi: 10.3390/ijms9050807
-
[26]
(26) Ren, X. L.; Meng, X.W.; Tang, F. Q. Sensor. Actuat. B 2005, 110, 358. doi: 10.1016/j.snb.2005.02.016
-
[27]
(27) Pootawang, P.; Lee, S. Y. Mater. Lett. 2012, 80, 1. doi: 10.1016/j.matlet.2012.04.077
-
[28]
(28) Boutros, M.; Trichard, J. M.; Costa, P. D. Appl. Catal. B: Environ. 2009, 91, 640. doi: 10.1016/j.apcatb.2009.07.004
-
[29]
(29) Yong, G. P.; Tian, D.; Tong, H.W.; Liu, S. M. J. Mol. Catal. A: Chem. 2010, 323, 40. doi: 10.1016/j.molcata.2010.03.007
-
[30]
(30) Tian, D.; Yong, G. P.; Dai, Y.; Yan X. Y.; Liu, S. M. Catal. Lett. 2009, 130, 211. doi: 10.1007/s10562-009-9865-6
-
[31]
(31) Qu, Z. P.; Shen, S. J.; Chen D.;Wang, Y. J. Mol. Catal. A: Chem. 2012, 356, 171. doi: 10.1016/j.molcata.2012.01.013
-
[32]
(32) Guo, X. Z.; Li,W. Y.; Zhu, Y.; Nakanishi, K.; Kanamori, K.; Yang, H. Acta Phys. -Chim. Sin. 2013, 29, 1. [郭兴忠, 李文彦, 朱阳, 中西和樹, 金森主祥, 杨辉. 物理化学学报, 2013, 29, 1.]
-
[33]
(34) Nischala, K.; Rao, T. N.; Hebalkar, N. Colloids Surf. B 2011, 82, 203. doi: 10.1016/j.colsurfb.2010.08.039
-
[34]
(35) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
-
[35]
(36) Maa, J.;Wanga, C.; Peng, K.W. Biomaterials 2003, 24, 3505. doi: 10.1016/S0142-9612(03)00203-5
-
[36]
(37) Kubo, M.; Chaikittisilp,W.; Okubo, T. Chem. Mater. 2008, 20, 2887. doi: 10.1021/cm800371b
-
[37]
(38) Liang, Z.; Susha, A. S.; Yu, A.; Caruso, F. Adv. Mater. 2003, 15, 1849.
-
[1]
-
-
-
[1]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[2]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[6]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[10]
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
-
[11]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[12]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[13]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[14]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[15]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[16]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[17]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[18]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[19]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(570)
- Abstract views(616)
- HTML views(6)