Citation: ZHAO Qing-Liang, LIU Yang, WEI Nan, WANG Sheng. Photoelectric Characteristics of Self-Assembled Semiconducting Carbon Nanotube Thin Films[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1377-1383. doi: 10.3866/PKU.WHXB201405093 shu

Photoelectric Characteristics of Self-Assembled Semiconducting Carbon Nanotube Thin Films

  • Received Date: 26 February 2014
    Available Online: 9 May 2014

    Fund Project:

  • We used the self-assembly method to formhigh purity (99%) semiconducting carbon nanotube (CNT) aligned arrays. Thin-film transistors (TFTs) were fabricated with asymmetric Pd and Sc electrodes. We studied the electronic transport characteristics and infrared photoelectronic properties of the TFTs with different channel lengths. The physical mechanism of carrier transport and the dissociation of photoexcited carries are also discussed. We found that the electronic and photoelectronic properties of the TFTs were dependent on the channel length and the average length of the CNTs. The on/off ratio of the device was the lowest when the channel length of the device (L) was less than the average length of the CNTs (LCNT), and it increased with increasing L when L was larger than LCNT. In addition, the short circuit current of the device also decreased. These results provide an effective reference for further infrared detector applications based on high-purity semiconducting carbon nanotube TFTs.

  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0

    2. [2]

      (2) Perebeinos, V.; Tersoff, J.; Avouris, P. Nano Lett. 2006, 6, 205. doi: 10.1021/nl052044h

    3. [3]

      (3) Purewal, M. S.; Hong, B. H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Phys. Rev. Lett. 2007, 98, 186808. doi: 10.1103/PhysRevLett.98.186808

    4. [4]

      (4) Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Nature 2008, 454, 495. doi: 10.1038/nature07110

    5. [5]

      (5) Liang, X. L.; Wang, S.; Wei, X. L.; Ding, L.; Zhu, Y. Z.; Zhang, Z. Y.; Chen, Q.; Li, Y.; Zhang, J.; Peng, L. M. Adv. Mater. 2009, 21, 1339. doi: 10.1002/adma.v21:13

    6. [6]

      (6) Zhu, Y. Z.; Wang, S.; Wei, X. L.; Ding, L.; Zhang, Z. Y.; Liang, X. L.; Chen, Q.; Peng, L. M. Acta Phys. -Chim. Sin. 2008, 24, 2122. [朱玉振,王胜,魏贤龙, 丁力, 张志勇, 梁学磊, 陈清,彭练矛, 物理化学学报, 2008, 24, 2122]

    7. [7]

      (7) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, 2361. doi: 10.1126/science.1078727

    8. [8]

      (8) Itkis, M. E.; Borondics, F.; Yu, A.; Haddon, R. C. Science 2006, 312, 413. doi: 10.1126/science.1125695

    9. [9]

      (9) Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. ACS Appl. Mater. Inter. 2012, 4, 1154. doi: 10.1021/am201778x

    10. [10]

      (10) Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49. doi: 10.1038/29954

    11. [11]

      (11) Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Nature 2003, 424, 654. doi: 10.1038/nature01797

    12. [12]

      (12) Zhang, Z.; Liang, X.; Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; Zhou, W.; Li, Y.; Yao, Y.; Zhang, J.; Peng, L. M. Nano Lett. 2007, 7, 3603. doi: 10.1021/nl0717107

    13. [13]

      (13) Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. Nano Lett. 2009, 9, 4209. doi: 10.1021/nl9024243

    14. [14]

      (14) Wang, S.; Zhang, Z. Y.; Ding, L.; Liang, X. L.; Sun, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. Adv. Mater. 2008, 20, 3258. doi: 10.1002/adma.v20:17

    15. [15]

      (15) Yang, L.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Pei, T.; Li, Y.; Peng, L. M. Nature Photon. 2011, 5, 672. doi: 10.1038/nphoton.2011.250

    16. [16]

      (16) Yang, L.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Peng, L. M. Small 2013, 9, 1225. doi: 10.1002/smll.201203151

    17. [17]

      (17) Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Appl. Phys. Lett. 2003, 82, 2145. doi: 10.1063/1.1564291

    18. [18]

      (18) Zhang, J.; Wang, C.; Fu, Y.; Che, Y.; Zhou, C. W. ACS Nano 2011, 5, 3284. doi: 10.1021/nn2004298

    19. [19]

      (19) Wang, C.; Zhang, J.; Zhou, C. W. ACS Nano 2010, 4, 7123. doi: 10.1021/nn1021378

    20. [20]

      (20) Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y.; Wu, D. H. Nano Lett. 2007, 7, 2317. doi: 10.1021/nl070961c

    21. [21]

      (21) Wang, C.; Zhang, J.; Ryu, K.; Badmaev, A.; Arco, L. G.; Zhou, C. W. Nano Lett. 2009, 9, 4285. doi: 10.1021/nl902522f

    22. [22]

      (22) Shastry, T, A.; Seo, J.; Lopez, J.; Arnold, H.; Kelter J.; Sangwan, V.; Lauhon, L.; Marks, T.; Hersam, M. C. Small 2013, 9, 45. doi: 10.1002/smll.v9.1

    23. [23]

      (23) Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. ACS Nano 2008, 2, 2445. doi: 10.1021/nn800708w

    24. [24]

      (24) Kinoshita, M.; Steiner, M.; Engel, M.; Small, J. P.; Green, A. A.; Hersam, M. C.; Krupke, R.; Mendez, E. E.; Avouris, P. Opt. Express 2010, 18, 25738. doi: 10.1364/OE.18.025738

    25. [25]

      (25) Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Phys. Rep. 2005, 409, 47. doi: 10.1016/j.physrep.2004.10.006

    26. [26]

      (26) Cao, Q.; Han, S.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Nature Nanotech. 2013, 8, 180. doi: 10.1038/nnano.2012.257


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    17. [17]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

Metrics
  • PDF Downloads(611)
  • Abstract views(526)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return