Citation: HOU Na, LI Ying, WU Di, LI Zhi-Ru. Structures and Nonlinear Optical Properties of Alkali Metal-Doped t-Bu-calix[4]arene Molecules[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1223-1229. doi: 10.3866/PKU.WHXB201405091 shu

Structures and Nonlinear Optical Properties of Alkali Metal-Doped t-Bu-calix[4]arene Molecules

  • Received Date: 24 January 2014
    Available Online: 9 May 2014

    Fund Project:

  • Using density functional theory with the B3LYP functional, the optimized geometrical structures of the M@t-Bu-calix[4]arene and (M@t-Bu-calix[4]arene)Li' (M=Li, Na, K) compounds were obtained. Five stable isomers were identified for each bi-alkali-metal-doped (M@t-Bu-calix[4]arene)Li' species. The first three lowlying isomers have considerable intramolecular interaction energies between alkali metal atoms and the t-Bucalix[4]arene molecule, indicating their stabilities. According to natural bond orbital analyses, the outside Li' atom is negatively charged in some (M@t-Bu-calix[4]arene)Li' structures, indicating the alkalide characteristics of these isomers. In addition, the nonlinear optical (NLO) properties of isolated and alkali-metal-doped t-Bu-calix [4]arene molecules were calculated using the CAM-B3LYP method. The results indicate that the single-doped effect of alkali metalMgreatly enhances the first hyperpolarizability (β0) of the t-Bu-calix[4]arene molecule. In particular, when another Li atomis doped outside the M@t-Bu-calix[4]arene species, the resulting (M@t-Bucalix[4]arene)Li' compounds exhibit larger β0 values. Obviously, the alkali-metal-doping effect plays a crucial role. The MLi'-4 conformation has the largest β0 value (41827-114354 a.u.) among all the (M@t-Bu-calix[4]arene) Li' structural isomers, and it is found that the β0 value of (M@t-Bu-calix[4]arene)Li' gradually increases with increasing atomic number of the alkali metal M. Therefore, alkali-metal doping is an effective approach to enhance the NLOresponse of the t-Bu-calix[4]arene molecule.

  • 加载中
    1. [1]

      (1) Albert, I. D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575. doi: 10.1021/ja962968u

    2. [2]

      (2) Coe, B. J.; Foxon, S. P.; Harper, E. C.; Raftery, J.; Shaw, R.; Swanson, C. A.; Asselberghs, I.; Clays, K.; Brunschwig, B. S.; Fitch, A. G. Inorg. Chem. 2009, 48, 1370. doi: 10.1021/ic801224u

    3. [3]

      (3) Karamanis, P.; Pouchan, C. J. Phys. Chem. C 2012, 116, 11808. doi: 10.1021/jp3026573

    4. [4]

      (4) Janjua, M. R. S. A.; Liu, C. G.; Guan, W.; Zhuang, J.; Muhammad, S.; Yan, L. K.; Su, Z. M. J. Phys. Chem. A 2009, 113, 3576. doi: 10.1021/jp808707q

    5. [5]

      (5) Xu, H. L.; Li, Z. R.; Wu, D.; Ma, F.; Li, Z. J.; Gu, F. L. J. Phys. Chem. C 2009, 113, 4984. doi: 10.1021/jp806864w

    6. [6]

      (6) Muhammad, S.; Xu, H. L.; Liao, Y.; Kan, Y. H.; Su, Z. M. J. Am. Chem. Soc. 2009, 131, 11833. doi: 10.1021/ja9032023

    7. [7]

      (7) Jiang, Y.; Liu, Z.; Liu, H.; Cui, W.; Wang, N.; Liu, D.; Ge, X. Chin. Sci. Bull. 2012, 57, 4448.

    8. [8]

      (8) Wang, L. J.; Sun, S. L.; Zhong, R. L.; Liu, Y.; Wang, D. L.; Wu, H. Q.; Xu, H. L.; Pan, X. M.; Su, Z. M. RSC Adv. 2013, 3, 13348. doi: 10.1039/c3ra40909k

    9. [9]

      (9) Wang, Y. F.; Huang, J. G.; Zhou, G. P. Struct. Chem. 2013, 24, 1545. doi: 10.1007/s11224-012-0188-7

    10. [10]

      (10) Fan, L. T.; Li, Y.; Wu, D.; Li, Z. R.; Sun, C. C. Acta Phys. -Chim. Sin. 2012, 28, 555. [樊丽涛, 李莹, 吴迪, 李志儒, 孙家钟. 物理化学学报, 2012, 28, 555.] doi: 10.3866/PKU.WHXB201112212

    11. [11]

      (11) Dye, J. L.; Ceraso, J. M.; Lok, M.; Barnett, B.; Tehan, F. J. J. Am. Chem. Soc. 1974, 96, 608. doi: 10.1021/ja00809a060

    12. [12]

      (12) Tehan, F. J.; Barnett, B.; Dye, J. L. J. Am. Chem. Soc. 1974, 96, 7203. doi: 10.1021/ja00830a005

    13. [13]

      (13) Chen, W.; Li, Z. R.; Wu, D.; Li, Y.; Sun, C. C.; Gu, F. L.; Aoki, Y. J. Am. Chem. Soc. 2006, 128, 1072. doi: 10.1021/ja056314+

    14. [14]

      (14) Jing, Y. Q.; Li, Z. R.; Wu, D.; Li, Y.; Wang, B. Q.; Gu, F. L.; Aoki, Y. ChemPhysChem 2006, 7, 1759.

    15. [15]

      (15) Zinke, A.; Ziegler, E. Ber. Dtsch. Chem. Ges. 1944, 77B, 264.

    16. [16]

      (16) Zinke, A.; Kretz, R.; Leggewie, E.; Hössinger, K. Monatsh. Chem. 1952, 83, 1213. doi: 10.1007/BF00899467

    17. [17]

      (17) Ott, R.; Zinke, A. Oesterr. Chem. Ztg. 1954, 55, 156

    18. [18]

      (18) Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905. doi: 10.1021/jo00419a052

    19. [19]

      (19) Gutsche, C. D. Accounts Chem. Res. 1983, 16, 161. doi: 10.1021/ar00089a003

    20. [20]

      (20) Gutsche, C. D.; Bauer, L. J. J. Am. Chem. Soc. 1985, 107, 6052. doi: 10.1021/ja00307a038

    21. [21]

      (21) Andreetti, G. D.; Pochini, A.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1983, 1773.

    22. [22]

      (22) Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; Van Hummel, G. J.; U zzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165. doi: 10.1021/ja00167a010

    23. [23]

      (23) Khedkar, J. K.; Pinjari, R. V.; Gejji, S. P. J. Phys. Chem. A 2011, 115, 10624. doi: 10.1021/jp205441s

    24. [24]

      (24) Furer, V.; Borisoglebskaya, E.; Zverev, V.; Kovalenko, V. Spectrochim. Acta A 2006, 63, 207. doi: 10.1016/j.saa.2005.05.006

    25. [25]

      (25) Chen, W.; Li, Z. R.; Wu, D.; Li, Y.; Sun, C. C.; Gu, F. L. J. Am. Chem. Soc. 2005, 127, 10977. doi: 10.1021/ja050601w

    26. [26]

      (26) Wang, J. J.; Zhou, Z. J.; Bai, Y.; Liu, Z. B.; Li, Y.;Wu, D.; Chen, W.; Li, Z. R.; Sun, C. C. J. Mater. Chem. 2012, 22, 9652. doi: 10.1039/c2jm15405f

    27. [27]

      (27) Karamanis, P.; Marchal, R.; Carbonniére, P.; Pouchan, C. J. Chem. Phys. 2011, 135, 044511. doi: 10.1063/1.3615499

    28. [28]

      (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A02; Gaussian Inc.: Wallingford, CT, 2009.

    29. [29]

      (29) Dennington, R.; Keith, T.; Millam, J.; et al. GaussView, version 5; Semichem Inc.: Shawnee Mission, KS, 2009.

    30. [30]

      (30) Liu, Z. B.; Zhou, Z. J.; Li, Y.; Li, Z. R.; Wang, R.; Li, Q. Z.; Li, Y.; Jia, F. Y.; Wang, Y. F.; Li, Z. J. Phys. Chem. Chem. Phys. 2010, 12, 10562. doi: 10.1039/c004262e

    31. [31]

      (31) Fan, L. T.; Li, Y.; Wu, D.; Li, Z. R.; Sun, C. C. Aust. J. Chem. 2012, 65, 138. doi: 10.1071/CH11334

    32. [32]

      (32) Oudar, J. L.; Chemla, D. J. Chem. Phys. 1977, 66, 2664. doi: 10.1063/1.434213


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(392)
  • Abstract views(573)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return