Citation: SUN Hai-Jie, LI Yong-Yu, LI Shuai-Hui, ZHANG Yuan-Xin, LIU Shou-Chang, LIU Zhong-Yi, REN Bao-Zeng. ZnSO4 and La2O3 as Co-Modifier of the Monoclinic Ru Catalyst for Selective Hydrogenation of Benzene to Cyclohexene[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1332-1340. doi: 10.3866/PKU.WHXB201405072 shu

ZnSO4 and La2O3 as Co-Modifier of the Monoclinic Ru Catalyst for Selective Hydrogenation of Benzene to Cyclohexene

  • Received Date: 28 February 2014
    Available Online: 7 May 2014

    Fund Project:

  • A nano-scale monometallic Ru(0) catalyst was prepared by the precipitation method, and the effect of using ZnSO4 and La2O3 as co-modifiers on the performance of the catalyst for selective hydrogenation of benzene to cyclohexene was investigated. The catalysts before and after hydrogenation were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and N2-physisorption. It was found that increasing the amount of alkaline La2O3 increased the amount of the ((Zn(OH)2)3(ZnSO4)(H2O)x (x=1, 3) salt formed by the hydrolysis of ZnSO4, which resulted in a gradual decrease of the activity of the Ru(0) catalyst and a gradual increase of the selectivity for cyclohexene. When the molar ratio of La2O3/Ru was 0.075, cyclohexene selectivity of 75.2% and cyclohexene yield of 58.4% at a benzene conversion of 77.6% were achieved in 25 min over the Ru(0) catalyst in the presence of ZnSO4. Moreover, this catalytic system had od reusability. The mass transfer calculation results indicated that the liquid-solid diffusion constraints and pore diffusion limitations could all be ignored. This suggested that the high cyclohexene selectivity and cyclohexene yield could not be simply ascribed to physical effects, and were closely related to the catalyst structure and the catalytic system. Based on the experimental results, we suggest that the surface of the Ru(0) catalyst on which the (Zn(OH)2)3(ZnSO4)(H2O)x (x= 1, 3) salt chemisorbed had two types of active sites for activating the benzene molecules: Ru0 and Zn2+. The ability of Zn2+ to activate benzene was much weaker than that of Ru0 owing to some electron transfer from Zn2+ to Ru0, which was confirmed by the XPS and AES results. Furthermore, Zn2+ could cover some of the Ru active sites because Ru and Zn2+ have similar atomic radii, which decreased the number of Ru0 active sites for activating H2 molecules. As a result, the benzene activated on Zn2+ could only be hydrogenated to cyclohexene, and the activity of the Ru(0) catalyst decreased. A dual active site model is proposed, for the first time, to explain the reaction of benzene hydrogenation over the Ru-based catalyst, and Hückel molecular orbital theory was used to show the reasonableness of the model.

  • 加载中
    1. [1]

      (1) Lu, F.; Liu, J.; Xu, J. Prog. Chem. 2003, 15, 338. [路芳, 刘菁, 徐杰. 化学进展, 2003, 15, 338.]

    2. [2]

      (2) Sun, H. J.; Chen, Z. H.; Guo,W.; Zhou, X. L.; Liu, Z. Y.; Liu, S. C. Chin. J. Chem. 2011, 29, 369. doi: 10.1002/cjoc.201190092

    3. [3]

      (3) Surawanshi, P. T.; Mahajani, V. V. J. Chem. Tech. Biotechnol. 1997, 69, 154.

    4. [4]

      (4) Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Appl. Surf. Sci. 1997, 121 -122, 448.

    5. [5]

      (5) Wu, J. M.; Yang, Y. F.; Chen, J. L. Chem. Ind. Eng. Prog. 2003, 22, 295. [吴济民, 杨炎锋, 陈聚良. 化工进展, 2003, 22, 295.]

    6. [6]

      (6) Ning, J. B.; Xu, J.; Liu, J.; Lu, F. Catal. Lett. 2006, 109, 175. doi: 10.1007/s10562-006-0075-1

    7. [7]

      (7) Sun, H. J.;Wang, H. X.; Jiang, H. B.; Li, S. H.; Liu, S. C.; Liu, Z. Y.; Yuan, X. M.; Yang, K. J. Appl. Catal. A: Gen. 2013, 450, 160. doi: 10.1016/j.apcata.2012.10.016

    8. [8]

      (8) Sun, H. J.; Pan, Y. J.; Jiang, H. B.; Li, S. H.; Zhang, Y. X.; Liu, S. C.; Liu, Z. Y. Appl. Catal. A: Gen. 2013, 464 -465, 1.

    9. [9]

      (9) Sun, H. J.; Jiang, H. B.; Li, S. H.;Wang, H. X.; Pan, Y. J.; Dong, Y. Y.; Liu, S. C.; Liu, Z. Y. Chin. J. Catal. 2013, 34, 684. [孙海杰, 江厚兵, 李帅辉, 王红霞, 潘雅洁, 董莹莹, 刘寿长. 刘仲毅. 催化学报, 2013, 34, 684.] doi: 10.1016/S1872-2067(11)60489-0

    10. [10]

      (10) Sun, H. J.; Pan, Y. J.; Li, S. H.; Zhang, Y. X.; Dong, Y. Y.; Liu, S. C.; Liu. Z. Y. J. Energy Chem. 2013, 22, 710. doi: 10.1016/S2095-4956(13)60094-7

    11. [11]

      (11) Sun, H. J.; Dong, Y. Y.; Li, S. H.; Jiang, H. B.; Zhang, Y. X.; Liu, Z. Y.; Liu, S. C. J. Mol. Catal. A: Chem. 2013, 368 -369, 119.

    12. [12]

      (12) Sun, H. J.; Li, S. H.; Zhang, Y. X.; Jiang, H. B.; Qu, L. L.; Liu, S. C.; Liu, Z. Y. Chin. J. Catal. 2013, 34, 1482. [孙海杰, 李帅辉, 张元馨, 江厚兵, 曲良龙, 刘寿长, 刘仲毅. 催化学报, 2013, 34, 1482.]

    13. [13]

      (13) Zhang, P.;Wu, T. B.; Jiang, T.;Wang,W. T.; Liu, H. Z.; Fan, H. L.; Zhang, Z. F.; Han, B. X. Green Chem. 2012, 15, 152. doi:10.1016/S1872-2067(12)60637-8

    14. [14]

      (14) Tan, X. H.; Zhou, G. B.; Dou, R. F.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. Acta Phys. -Chim. Sin. 2014, 30, 932. [谭晓荷, 周功兵, 窦镕飞, 裴燕, 范康年, 乔明华, 孙斌, 宗保宁. 物理化学学报, 2014, 30, 932.]

    15. [15]

      (15) Liu, J. L.; Zhu, Y.; Liu, J.; Pei, Y.; Li, Z. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. J. Catal. 2009, 268, 100. doi: 10.1016/j.jcat.2009.09.007

    16. [16]

      (16) Fan, G. Y.; Li, R. X.; Li, X. J.; Chen, H. Catal. Commun. 2008, 9, 1394. doi: 10.1016/j.catcom.2007.11.039

    17. [17]

      (17) Sun, H. J.; Jiang, H. B.; Li, S. H.; Dong, Y. Y.;Wang, H. X.; Pan, Y. J.; Liu, S. C.; Tang, M. S.; Liu, Z. Y. Chem. Eng. J. 2013, 218, 415. doi: 10.1016/j.cej.2012.12.041

    18. [18]

      (18) Struijk, J.; d′Angremond, M.; Lucas-de Regt,W. J. M.; Scholten, J. J. F. Appl. Catal. A: Gen, 1992, 83, 263. doi:10.1016/0926-860X(92)85039-E

    19. [19]

      (19) Milone, C.; Neri, G.; Donato, A.; Musolino, M. G.; Mercadante, L. J. Catal. 1996, 159, 253. doi: 10.1006/jcat.1996.0086

    20. [20]

      (20) Folksson, B. Acta Chim. Scand. 1973, 27, 287. doi: 10.3891/acta. chem.scand.27-0287

    21. [21]

      (21) Nyholm, R.; Martensson, N. J. Phys. C 1980, 13, 1279.

    22. [22]

      (22) Moretti, G.; Fierro, G.; Lo Jacono, M.; Porta, P. Surf. Interface Anal. 1989, 14, 325.

    23. [23]

      (23) Ramos-Fernández, E. V.; Ferreira, A. F. P.; Sepúlveda-Escribano, A.; Kapteijn, F.; Rodríguez-Reinoso, F. J. Catal. 2008, 258, 52. doi: 10.1016/j.jcat.2008.05.025

    24. [24]

      (24) Su, F. B.; Lee, F. Y.; Lv, L.; Liu, J.; Tian, X. N.; Zhao, X. S. Adv. Funct. Mater. 2007, 17, 1926.

    25. [25]

      (25) Hu, S. C.; Chen, Y.W. Ind. Eng. Chem. Res. 1997, 36, 5153. doi: 10.1021/ie970300y

    26. [26]

      (26) Liu, H. Z.; Jiang, T.; Han, B. X.; Liang, S. G.; Zhou, Y. X. Science 2009, 326, 1250. doi: 10.1126/science.1179713

    27. [27]

      (27) Marchi, A. J.; rdo, D. A.; Trasrti, A. F.; Apesteguía, C. R. Appl. Catal. A: Gen. 2003, 249, 53. doi: 10.1016/S0926-860X(03)00199-6


  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(494)
  • Abstract views(763)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return