Citation: LIU Xin, XIE Jing-Ying, ZHAO Hai-Lei, LÜ Peng-Peng, WANG Ke, FENG Zhen-He, WANG Meng-Wei. Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1281-1289. doi: 10.3866/PKU.WHXB201405071 shu

Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries

  • Received Date: 10 February 2014
    Available Online: 7 May 2014

    Fund Project:

  • Tin has a theoretical specific capacity as high as 990 mAh·g-1, and is thus a potential anode material for high-energy-density lithium-ion batteries. However, it suffers from a huge volume change during lithiation/delithiation process, leading to poor cycle performance. In this paper, core/shell structured FeSn2-C composites were successfully synthesized by a simple high-energy ball milling technique with Sn, Fe, and graphite powder as raw materials. The FeSn2-C composite was evaluated as an anode material for lithium-ion batteries. The influence of milling time and final phase composition on the microstructure and electrochemical performance of FeSn2-C composites was systematically investigated. The failure mechanism of the FeSn2-C electrode was also analyzed. The results reveal that long milling time can promote the mechanical alloying process of the FeSn2 phase and reduce the particle size of the FeSn2-C composite, which are beneficial for the increase of the specific capacity and the improvement of the cycle performance of the FeSn2-C electrode. A high FeSn2 phase content leads to a high specific capacity of the FeSn2-C composites but poor cycling stability of the electrode. The optimized Sn20Fe10C70 composite prepared by ball milling for 24 h (500 r ·min-1) shows the best electrochemical performance with a capacity about 540 mAh·g-1 for 100 cycles. The synthesized Sn20Fe10C70 composite is a promising anode material for highenergy-density lithium-ion batteries.

  • 加载中
    1. [1]

      (1) Zhamu, A.; Chen, G.; Liu, C.; Neff, D.; Fang Q.; Yu, Z.; Xiong, W.;Wang, Y.;Wang, X.; Jang, B. Z. Energy & Environ. Sci. 2012, 5, 5701.

    2. [2]

      (2) Chang, Y. Q.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26, 561. [常玉清, 黄令, 孙世刚. 物理化学学报, 2010, 26, 561.]

    3. [3]

      (3) Guo, H.; Zhao, H.; Jia, X.; Li, X.; Qiu,W. Electrochim. Acta 2007, 52, 4853.

    4. [4]

      (4) Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. J. Alloy. compd. 2013, 575, 246.

    5. [5]

      (5) Liu, X.; Xie, J. Y.; Zhao, H. L.;Wang, K.; Tang,W. P.; Pan, Y. L.; Feng, Z. H.; LÜ, P. P. Acta Chim. Sin. 2013, 71, 1011. [刘欣, 解晶莹, 赵海雷, 王可, 汤卫平, 潘延林, 丰震河, 吕鹏鹏. 化学学报, 2013, 71, 1011]

    6. [6]

      (6) Zhang,W. J. J. Power Sources 2011, 196, 13.

    7. [7]

      (7) Todd, A. D.W.; Mar, R. E.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1998.

    8. [8]

      (8) Guo, H.; Zhao, H.; Jia, X. Electrochem. Commun. 2007, 9, 2207.

    9. [9]

      (9) Fan, X. Y.; Zhuang, Q. C.;Wei, G. Z.; Ke, F. S.; Huang, L.; Dong, Q. F.; Sun, S. G. Acta Phys. -Chim. Sin. 2009, 25, 611. [樊小勇, 庄全超, 魏国祯, 柯福生, 黄令, 董全峰, 孙世刚. 物理化学学报, 2009, 25, 611.]

    10. [10]

      (10) Zhang,W. J. J. Power Sources 2011, 196, 877.

    11. [11]

      (11) Ferguson, P. P.; Todd, A. D.W.; Dahn, J. R. Electrochem. Commun. 2008, 10, 25.

    12. [12]

      (12) Jung, H. R.;Wan, J. L. J. Electrochem. Soc. 2011, 158, A644.

    13. [13]

      (13) Mao, O.; Dunlap, R. A.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 405.

    14. [14]

      (14) Mao, O.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 414.

    15. [15]

      (15) Mao, O.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 423.

    16. [16]

      (16) Yoon, S.; Lee, J. M.; Kim, H.; Im, D.; Doo, S. G.; Sohn, H. J. Electrochim. Acta 2009, 54, 2699.

    17. [17]

      (17) Lee, J. M.; Jung, H.; Hwa, Y.; Kim, H.; Im, D.; Doo, S. G.; Sohn, H.J. J. Power Sources 2010, 195, 5044.

    18. [18]

      (18) Ferguson, P. P.; Liao, P.; Dunlap, R. A.; Dahn, J. R. J. Electrochem. Soc. 2009, 156, A13.

    19. [19]

      (19) Holzwarth, U.; Gibson, N. Nat. Nanotechnol. 2011, 6, 534.

    20. [20]

      (20) Todd, A. D.W.; Ferguson, P. P.; Fleischauer, M. D.; Dahn, J. R. Int. J. Energy Res. 2010, 34, 535.

    21. [21]

      (21) Chamas, M.; Lippens, P. E.; Jumas, J. C.; Boukerma, K.; Dderyvere, R.; nbeau, D.; Hassoun, J.; Panero, S.; Scrosati, B. J. Power Sources 2011, 196, 7011.

    22. [22]

      (22) Zhang, C. Q.; Tu, J. P.; Huang, X. H.; Yuan, Y. F.;Wang, S. F.; Mao, F. J. Alloy. Compd. 2008, 457, 81.


  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

Metrics
  • PDF Downloads(557)
  • Abstract views(688)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return