Citation: LIU Xin, XIE Jing-Ying, ZHAO Hai-Lei, LÜ Peng-Peng, WANG Ke, FENG Zhen-He, WANG Meng-Wei. Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1281-1289. doi: 10.3866/PKU.WHXB201405071
-
Tin has a theoretical specific capacity as high as 990 mAh·g-1, and is thus a potential anode material for high-energy-density lithium-ion batteries. However, it suffers from a huge volume change during lithiation/delithiation process, leading to poor cycle performance. In this paper, core/shell structured FeSn2-C composites were successfully synthesized by a simple high-energy ball milling technique with Sn, Fe, and graphite powder as raw materials. The FeSn2-C composite was evaluated as an anode material for lithium-ion batteries. The influence of milling time and final phase composition on the microstructure and electrochemical performance of FeSn2-C composites was systematically investigated. The failure mechanism of the FeSn2-C electrode was also analyzed. The results reveal that long milling time can promote the mechanical alloying process of the FeSn2 phase and reduce the particle size of the FeSn2-C composite, which are beneficial for the increase of the specific capacity and the improvement of the cycle performance of the FeSn2-C electrode. A high FeSn2 phase content leads to a high specific capacity of the FeSn2-C composites but poor cycling stability of the electrode. The optimized Sn20Fe10C70 composite prepared by ball milling for 24 h (500 r ·min-1) shows the best electrochemical performance with a capacity about 540 mAh·g-1 for 100 cycles. The synthesized Sn20Fe10C70 composite is a promising anode material for highenergy-density lithium-ion batteries.
-
-
[1]
(1) Zhamu, A.; Chen, G.; Liu, C.; Neff, D.; Fang Q.; Yu, Z.; Xiong, W.;Wang, Y.;Wang, X.; Jang, B. Z. Energy & Environ. Sci. 2012, 5, 5701.
-
[2]
(2) Chang, Y. Q.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26, 561. [常玉清, 黄令, 孙世刚. 物理化学学报, 2010, 26, 561.]
-
[3]
(3) Guo, H.; Zhao, H.; Jia, X.; Li, X.; Qiu,W. Electrochim. Acta 2007, 52, 4853.
-
[4]
(4) Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. J. Alloy. compd. 2013, 575, 246.
-
[5]
(5) Liu, X.; Xie, J. Y.; Zhao, H. L.;Wang, K.; Tang,W. P.; Pan, Y. L.; Feng, Z. H.; LÜ, P. P. Acta Chim. Sin. 2013, 71, 1011. [刘欣, 解晶莹, 赵海雷, 王可, 汤卫平, 潘延林, 丰震河, 吕鹏鹏. 化学学报, 2013, 71, 1011]
-
[6]
(6) Zhang,W. J. J. Power Sources 2011, 196, 13.
-
[7]
(7) Todd, A. D.W.; Mar, R. E.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1998.
-
[8]
(8) Guo, H.; Zhao, H.; Jia, X. Electrochem. Commun. 2007, 9, 2207.
-
[9]
(9) Fan, X. Y.; Zhuang, Q. C.;Wei, G. Z.; Ke, F. S.; Huang, L.; Dong, Q. F.; Sun, S. G. Acta Phys. -Chim. Sin. 2009, 25, 611. [樊小勇, 庄全超, 魏国祯, 柯福生, 黄令, 董全峰, 孙世刚. 物理化学学报, 2009, 25, 611.]
-
[10]
(10) Zhang,W. J. J. Power Sources 2011, 196, 877.
-
[11]
(11) Ferguson, P. P.; Todd, A. D.W.; Dahn, J. R. Electrochem. Commun. 2008, 10, 25.
-
[12]
(12) Jung, H. R.;Wan, J. L. J. Electrochem. Soc. 2011, 158, A644.
-
[13]
(13) Mao, O.; Dunlap, R. A.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 405.
-
[14]
(14) Mao, O.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 414.
-
[15]
(15) Mao, O.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 423.
-
[16]
(16) Yoon, S.; Lee, J. M.; Kim, H.; Im, D.; Doo, S. G.; Sohn, H. J. Electrochim. Acta 2009, 54, 2699.
-
[17]
(17) Lee, J. M.; Jung, H.; Hwa, Y.; Kim, H.; Im, D.; Doo, S. G.; Sohn, H.J. J. Power Sources 2010, 195, 5044.
-
[18]
(18) Ferguson, P. P.; Liao, P.; Dunlap, R. A.; Dahn, J. R. J. Electrochem. Soc. 2009, 156, A13.
-
[19]
(19) Holzwarth, U.; Gibson, N. Nat. Nanotechnol. 2011, 6, 534.
-
[20]
(20) Todd, A. D.W.; Ferguson, P. P.; Fleischauer, M. D.; Dahn, J. R. Int. J. Energy Res. 2010, 34, 535.
-
[21]
(21) Chamas, M.; Lippens, P. E.; Jumas, J. C.; Boukerma, K.; Dderyvere, R.; nbeau, D.; Hassoun, J.; Panero, S.; Scrosati, B. J. Power Sources 2011, 196, 7011.
-
[22]
(22) Zhang, C. Q.; Tu, J. P.; Huang, X. H.; Yuan, Y. F.;Wang, S. F.; Mao, F. J. Alloy. Compd. 2008, 457, 81.
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[4]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[5]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[6]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[9]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[10]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[11]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[12]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[13]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[14]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[15]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[16]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[17]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[18]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[19]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[20]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[1]
Metrics
- PDF Downloads(557)
- Abstract views(688)
- HTML views(3)