Citation: LI Xu, ZOU Zhi-Qiang, LIU Xiao-Yong, LI Wei. Structure and Orientation Analysis of Iron Silicide Epitaxially Grown on Si Substrates[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1370-1376. doi: 10.3866/PKU.WHXB201405061 shu

Structure and Orientation Analysis of Iron Silicide Epitaxially Grown on Si Substrates

  • Received Date: 24 February 2014
    Available Online: 6 May 2014

    Fund Project:

  • Iron silicides were grown on Si(110) and Si(111) substrates by the molecular beam epitaxy method at 650-920 ℃ and 920 ℃, respectively. Scanning tunneling microscopy observation showed that only nanowires (NWs) formed on Si(110), and the dimensions of the NWs increased with increasing growth temperature. The sizes of the NWs grown at 920 ℃ reached ~80 nm high, ~250 nm wide, and several μm long, and were much larger than NWs grown at 650 ℃, indicating that high temperature was favorable for NW growth. Electron backscatter diffraction characterization identified that the crystal structure of the NWs grown at 920 ℃ was β-FeSi2 with a single orientation of β-FeSi2(101)//Si(111)), β-FeSi2[010]//Si[110]. Iron silicides grown on Si(111) at 920 ℃ formed three-dimensional (3D) islands and ultra-thin films. The 3D islands were identified as the Fe2Si phase with hexa nal crystal structure and space group 164, and the cell constants at room temperature were a=0.405 nm and c=0.509 nm. The orientation relationship between the Fe2Si phase and the Si(111) substrate was Fe2Si(001)//Si(111), Fe2Si[120]//Si[112].


    1. [1]

      (1) Tam, P. L.; Cao, Y.; Nyborg, L. Surf. Sci. 2012, 606, 329. doi: 10.1016/j.susc.2011.10.015

    2. [2]

      (2) Wang, D.; Zou, Z. Q.; Sun, J. J.; Zhao, M. H. Acta Phys. -Chim. Sin. 2010, 26, 1291. [王丹, 邹志强, 孙静静, 赵明海. 物理化学学报, 2010, 26, 1291.]

    3. [3]

      (3) Zhang, S. L.; Smith, U. J. Vac. Sci. Technol. A 2004, 22, 1361.

    4. [4]

      (4) Maszara,W. P. J. Electrochem. Soc. 2005, 152, 550. doi: 10.1149/1.1924307

    5. [5]

      (5) Liang, Y. F.; Shang, S. L.;Wang, J.;Wang, Y.; Ye, F.; Lin, J. P.; Chen, G. L.; Liu, Z. K. Intermetallics 2011, 19, 1374. doi: 10.1016/j.intermet.2011.04.009

    6. [6]

      (6) Tajima, K.; Endoh, Y.; Fischer, J.; Shirane, G. Phys. Rev. B 1988, 38, 6954. doi: 10.1103/PhysRevB.38.6954

    7. [7]

      (7) Tripathi, J. K.; Markovich, G.; ldfarb, I. Appl. Phys. Lett. 2013, 102, 251604. doi: 10.1063/1.4812239

    8. [8]

      (8) Gerthsen, D.; Radermacher, K.; Dieker, C.; Mantl, S. J. Appl. Phys. 1992, 71, 3788. doi: 10.1063/1.350891

    9. [9]

      (9) Chevrier, J.; Stocker, P.; Gay, J.; Derrien, J. Europhys. Lett. 1993, 22, 449. doi: 10.1209/0295-5075/22/6/009

    10. [10]

      (10) Geib, K. M.; Mahan, J. E.; Long, R. G.; Nathan, M.; Bai, G. J. Appl. Phys. 1991, 70, 1730. doi: 10.1063/1.349543

    11. [11]

      (11) Känel, H. V.; Kafader, U.; Sutter, P.; Onda, N.; Sirringhaus, H.; Müller, E.; Kroll, U.; Schwarz, C.; ncalves-Conto, S. Mater. Res. Soc. Symp. Proc. 1994, 320, 73.

    12. [12]

      (12) Liang, S.; Islam, R.; Smith, D. J.; Bennett, P. A. J. Cryst. Growth 2006, 295, 166. doi: 10.1016/j.jcrysgro.2006.05.076

    13. [13]

      (13) Ueda, K.; Kizuka, R.; Takeuchi, H.; Kenjo, A.; Sadoh, T.; Miyao, M. Thin Solid Films 2007, 515, 8250. doi: 10.1016/j. tsf.2007.02.052

    14. [14]

      (14) Casady, J.; Johnson, R.W. Solid-State Electron. 1996, 39, 1409. doi: 10.1016/0038-1101(96)00045-7

    15. [15]

      (15) Shi, G. M.; Zou, Z. Q.; Sun, L. M.; Li,W. C.; Liu, X. Y. Acta Phys. Sin. 2012, 61, 227301. [石高明, 邹志强, 孙立民, 李玮聪, 刘晓勇. 物理学报, 2012, 61, 227301.]

    16. [16]

      (16) Zou, Z. Q.; Shi, G. M.; Sun, L. M.; Liu, X. Y. J. Appl. Phys. 2013, 113, 024305. doi: 10.1063/1.4774098

    17. [17]

      (17) Azatyan, S. G.; Iwami, M.; Lifshits, V. G. Surf. Sci. 2005, 589, 106. doi: 10.1016/j.susc.2005.05.064

    18. [18]

      (18) Wang, L.; Qin, L.; Zheng, Y.; Shen,W.; Chen, X.; Lin, X.; Lin, C.; Zou, S. Appl. Phys. Lett. 1994, 65, 3105. doi: 10.1063/1.112450

    19. [19]

      (19) Wu, J.; Shimizu, S. J. Appl. Phys. 1996, 80, 559. doi: 10.1063/1.362760

    20. [20]

      (20) Chen, Y. J.; Hjelen, J.; Roven, H. J. Trans. Nonferrou Met. Soc. China 2012, 22, 1801. doi: 10.1016/S1003-6326(11)61390-3

    21. [21]

      (21) Yang, P. Eelectron Backscatter Diffraction Technology and Its Applicatioin; Metallurgical Industry Press: Beijing, 2007; pp 51-55. [杨平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 51-55]

    22. [22]

      (22) He, Z.; Smith, D. J.; Bennett, P. A. Phys. Rev. Lett. 2004, 93, 256102. doi: 10.1103/PhysRevLett.93.256102

    23. [23]

      (23) Sugimoto, Y.; Abe, M.; Konoshita, S.; Morita, S. Nanotechnology 2007, 18, 084012. doi: 10.1088/0957-4484/18/8/084012

    24. [24]

      (24) Zou, Z. Q.; Sun, L. M.; Shi, G. M.; Liu, X. Y.; Li, X. Nanoscale Res. Lett. 2013, 8, 510. doi: 10.1186/1556-276X-8-510

    25. [25]

      (25) Galkin, N. G.; Polyarnyi, V. O.; uralnik, A. S. Thin Solid Films 2004, 464-65, 199.


    1. [1]

      (1) Tam, P. L.; Cao, Y.; Nyborg, L. Surf. Sci. 2012, 606, 329. doi: 10.1016/j.susc.2011.10.015

    2. [2]

      (2) Wang, D.; Zou, Z. Q.; Sun, J. J.; Zhao, M. H. Acta Phys. -Chim. Sin. 2010, 26, 1291. [王丹, 邹志强, 孙静静, 赵明海. 物理化学学报, 2010, 26, 1291.]

    3. [3]

      (3) Zhang, S. L.; Smith, U. J. Vac. Sci. Technol. A 2004, 22, 1361.

    4. [4]

      (4) Maszara,W. P. J. Electrochem. Soc. 2005, 152, 550. doi: 10.1149/1.1924307

    5. [5]

      (5) Liang, Y. F.; Shang, S. L.;Wang, J.;Wang, Y.; Ye, F.; Lin, J. P.; Chen, G. L.; Liu, Z. K. Intermetallics 2011, 19, 1374. doi: 10.1016/j.intermet.2011.04.009

    6. [6]

      (6) Tajima, K.; Endoh, Y.; Fischer, J.; Shirane, G. Phys. Rev. B 1988, 38, 6954. doi: 10.1103/PhysRevB.38.6954

    7. [7]

      (7) Tripathi, J. K.; Markovich, G.; ldfarb, I. Appl. Phys. Lett. 2013, 102, 251604. doi: 10.1063/1.4812239

    8. [8]

      (8) Gerthsen, D.; Radermacher, K.; Dieker, C.; Mantl, S. J. Appl. Phys. 1992, 71, 3788. doi: 10.1063/1.350891

    9. [9]

      (9) Chevrier, J.; Stocker, P.; Gay, J.; Derrien, J. Europhys. Lett. 1993, 22, 449. doi: 10.1209/0295-5075/22/6/009

    10. [10]

      (10) Geib, K. M.; Mahan, J. E.; Long, R. G.; Nathan, M.; Bai, G. J. Appl. Phys. 1991, 70, 1730. doi: 10.1063/1.349543

    11. [11]

      (11) Känel, H. V.; Kafader, U.; Sutter, P.; Onda, N.; Sirringhaus, H.; Müller, E.; Kroll, U.; Schwarz, C.; ncalves-Conto, S. Mater. Res. Soc. Symp. Proc. 1994, 320, 73.

    12. [12]

      (12) Liang, S.; Islam, R.; Smith, D. J.; Bennett, P. A. J. Cryst. Growth 2006, 295, 166. doi: 10.1016/j.jcrysgro.2006.05.076

    13. [13]

      (13) Ueda, K.; Kizuka, R.; Takeuchi, H.; Kenjo, A.; Sadoh, T.; Miyao, M. Thin Solid Films 2007, 515, 8250. doi: 10.1016/j. tsf.2007.02.052

    14. [14]

      (14) Casady, J.; Johnson, R.W. Solid-State Electron. 1996, 39, 1409. doi: 10.1016/0038-1101(96)00045-7

    15. [15]

      (15) Shi, G. M.; Zou, Z. Q.; Sun, L. M.; Li,W. C.; Liu, X. Y. Acta Phys. Sin. 2012, 61, 227301. [石高明, 邹志强, 孙立民, 李玮聪, 刘晓勇. 物理学报, 2012, 61, 227301.]

    16. [16]

      (16) Zou, Z. Q.; Shi, G. M.; Sun, L. M.; Liu, X. Y. J. Appl. Phys. 2013, 113, 024305. doi: 10.1063/1.4774098

    17. [17]

      (17) Azatyan, S. G.; Iwami, M.; Lifshits, V. G. Surf. Sci. 2005, 589, 106. doi: 10.1016/j.susc.2005.05.064

    18. [18]

      (18) Wang, L.; Qin, L.; Zheng, Y.; Shen,W.; Chen, X.; Lin, X.; Lin, C.; Zou, S. Appl. Phys. Lett. 1994, 65, 3105. doi: 10.1063/1.112450

    19. [19]

      (19) Wu, J.; Shimizu, S. J. Appl. Phys. 1996, 80, 559. doi: 10.1063/1.362760

    20. [20]

      (20) Chen, Y. J.; Hjelen, J.; Roven, H. J. Trans. Nonferrou Met. Soc. China 2012, 22, 1801. doi: 10.1016/S1003-6326(11)61390-3

    21. [21]

      (21) Yang, P. Eelectron Backscatter Diffraction Technology and Its Applicatioin; Metallurgical Industry Press: Beijing, 2007; pp 51-55. [杨平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 51-55]

    22. [22]

      (22) He, Z.; Smith, D. J.; Bennett, P. A. Phys. Rev. Lett. 2004, 93, 256102. doi: 10.1103/PhysRevLett.93.256102

    23. [23]

      (23) Sugimoto, Y.; Abe, M.; Konoshita, S.; Morita, S. Nanotechnology 2007, 18, 084012. doi: 10.1088/0957-4484/18/8/084012

    24. [24]

      (24) Zou, Z. Q.; Sun, L. M.; Shi, G. M.; Liu, X. Y.; Li, X. Nanoscale Res. Lett. 2013, 8, 510. doi: 10.1186/1556-276X-8-510

    25. [25]

      (25) Galkin, N. G.; Polyarnyi, V. O.; uralnik, A. S. Thin Solid Films 2004, 464-65, 199.


  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    7. [7]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(432)
  • Abstract views(629)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return