Citation: WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1267-1273. doi: 10.3866/PKU.WHXB201405052
-
Nitrogen-doped reduced graphene oxide materials (N-R ) derived from pyrolysis of graphene oxide ( )/polyaniline composites were used as a support for the immobilization of Pt nanoparticles. The morphologies and structures of N-R and Pt/N-R were comprehensively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The electrocatalytic activities of the as-prepared catalysts for CO stripping and methanol oxidation were investigated by cyclic voltammetry and chronoamperometry. The results showed that was reduced to multilayer graphene by thermal annealing accompanied with successful incorporation of N atoms into R . Moreover, the presence of the doped N atoms enhanced the surface defects and electrical conductivity of the R materials. Pt nanoparticles on N-R were more evenly dispersed, had better CO tolerance, and had higher activity/stability for methanol oxidation than those on R without N doping.
-
-
[1]
(1) Wei, D.; Liu, Y.;Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t
-
[2]
(2) Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. ACS Nano 2012, 6, 205. doi: 10.1021/nn203393d
-
[3]
(3) Shao, Y. Y.; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B 2008, 79 (1), 89. doi: 10.1016/j.apcatb.2007.09.047
-
[4]
(4) Xiong, B.; Zhou, Y. K.; O′Hayre, R.; Shao, Z. P. Appl. Surf. Sci. 2013, 266, 433. doi: 10.1016/j.apsusc.2012.12.053
-
[5]
(5) Wu, J.; Hu, F.; Hu, X.;Wei, Z. D.; Shen, P. K. Electrochimica Acta 2008, 53 (28), 8341. doi:10.1016/j.electacta.2008.06.051
-
[6]
(6) Zhou, C.W.; Kong, J.; Yenilmez, E.; Dai, H. J. Science 2000, 290, 1552. doi: 10.1126/science.290.5496.1552
-
[7]
(7) He, D. P.; Jiang, Y. L.; Lv, H. F.; Pan, M.; Mu, S. C. Applied Catalysis B: Environmental 2013, 132 -133, 379.
-
[8]
(8) Xiao, X.; Zhou, Y. K.; Lu, J. M.; Tian, X. H.; Zhu, H. X.; Liu, J. G. Electrochimica Acta 2014, 120, 439. doi: 10.1016/j. electacta.2013.12.062
-
[9]
(9) Zhang, L. S.; Liang, X. Q.; Song,W. G.;Wu, Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055. doi: 10.1039/c0cp00789g
-
[10]
(10) Sun, L.;Wang, L.; Tian, G. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li, M. T.; Fu, H. G. RSC Adv. 2012, 2, 4498. doi: 10.1039/c2ra01367c
-
[11]
(11) Wang, Y.; Shao, Y. Y.; Matson, D.W.; Li, J. H.; Lin, Y. H. ACS Nano 2010, 4, 1790.
-
[12]
(12) Hassan, F. M.; Chabot, V.; Li, J. D.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A. P. J. Mater. Chem. A 2013, 1, 2904.
-
[13]
(13) Xu, X.; Zhou, Y. K.; Yuan, T.; Li, Y.W. Electrochimica Acta 2013, 112, 587. doi: 10.1016/j.electacta.2013.09.038
-
[14]
(14) Lin, Z. Y.;Waller, G.; Liu, Y.; Liu, M. L.;Wong, C. P. Adv. Energy Mater. 2012, 2 (7), 884.
-
[15]
(15) Lin, Z.Y.; Song, M. K.; Ding, Y.; Liu, Y.; Liu, M. L.;Wong, C. P. Phys. Chem. Chem. Phys. 2012, 14, 3381. doi: 10.1039/c2cp00032f
-
[16]
(16) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
-
[17]
(17) Lin, Z. Y.;Waller, G.; Liu, Y.; Liu, M. L.;Wong, C. P. Nano Energy 2013, 2, 241. doi: 10.1016/j.nanoen.2012.09.002
-
[18]
(18) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C. H.; ng, H.; Shen, Z. X.; Lin, J. Y.; Rodney, S. R. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j
-
[19]
(19) Wu, G.; Mack, N. H.; Gao,W.; Ma, S. G.; Zhong, R. Q.; Han, J. T.; Baldwin, J. K.; Zelenay, P. ACS Nano 2012, 6 (11), 9764. doi: 10.1021/nn303275d
-
[20]
(20) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[21]
(21) Wu, G.; Swaidan, R. J.; Li, D. Y.; Li, N. Electrochimica Acta 2008, 53, 7622. doi: 10.1016/j.electacta.2008.03.082
-
[22]
(22) Stankovicha, S.; Dikina, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.;Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi: 10.1016/j.carbon.2007.02.034
-
[23]
(23) Liu, S.;Wang, J.; Zeng, J.; Ou, J.; Li, Z.; Liu, X.; Yang, S. G. J. Power Sources 2010, 195 (15), 4628. doi: 10.1016/j. jpowsour.2010.02.024
-
[24]
(24) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401
-
[25]
(25) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud′homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36. doi: 10.1021/nl071822y
-
[26]
(26) Xin, Y. C.; Liu, J. G.; Zhou, Y.; Liu,W. M.; Gao, J.; Xie, Y.; Yin, Y.; Zou, Z. G. Electrochimica Acta 2012, 60, 354. doi: 10.1016/j.electacta.2011.11.062
-
[27]
(27) Kuo, P. L.; Chen,W. F.; Huang, H. Y.; Chang, I. C.; Dai, S. A. J. Phys. Chem. B 2006, 110, 3071.
-
[28]
(28) Wu, G.; Li, D.; Dai, C.;Wang, D.; Li, N. Langmuir 2008, 24, 3566. doi: 10.1021/la7029278
-
[29]
(29) Groves, M. N.; Chan, A. S.W.; Malardier, J. C.; Jugroot, M. Chem. Phys. Lett. 2009, 481, 214. doi: 10.1016/j.cplett.2009.09.074
-
[30]
(30) Zhou, Y.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z. P.; O'Hayre, R. Energy Environ. Sci. 2010, 3 (10), 1437. doi: 10.1039/c003710a
-
[31]
(31) Wang, S. Y.; Jiang, S. P.;Wang, X.; Guo, J. Electrochimica Acta 2011, 56, 1563. doi: 10.1016/j.electacta.2010.10.055
-
[32]
(32) Zheng, S. F.; Hu, J. S.; Zhong, L. S.;Wan, L. J.; Song,W. G. J. Phys. Chem. C 2007, 111, 11174. doi: 10.1021/jp0727042
-
[33]
(33) Zheng, B.; Zheng,W. T.; Zhang, K.;Wen, Q. B.; Zhu, J. Q.; Meng, S. H.; He, X. D.; Han, J. C. Carbon 2006, 44, 962. doi: 10.1016/j.carbon.2005.10.009
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[3]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[4]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[5]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[8]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[9]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[10]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[11]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[12]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[13]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[14]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[17]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[18]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[19]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(757)
- Abstract views(753)
- HTML views(10)