Citation:
FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin. Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(7): 1259-1266.
doi:
10.3866/PKU.WHXB201405045
-
Pt/cobalt-polypyrrole-carbon (Co-PPy-C)-supported catalysts were successfully prepared by pulse-microwave assisted chemical reduction. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques were used to characterize the catalyst microstructure and morphology. The electrocatalytic performance, kinetic characteristics of the oxygen reduction reaction (ORR), and durability of the catalysts were measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. It was found that the particle size of Pt/Co-PPy-C was about 1.8 nm, which was smaller than that of commercial Pt/C (JM) catalysts (2.5 nm). The metal particles were well-dispersed on the carbon support. The electrochemical specific area (ECSA) of Pt/Co-PPy-C (75.1 m2· g-1) was much higher than that of Pt/C (JM) (51.3 m2·g-1). The results of XPS showed that most of the Pt in the catalysts was in the Pt(0) state, and XRD results showed that the form of Pt was mainly the facecentered cubic lattice. The Pt/Co-PPy-C catalyst had the same half-wave potential as Pt/C (JM) and showed higher ORR activity. The Pt/Co-PPy-C catalyst proceeded by an approximately four-electron pathway in acid solution. After 1000 cycles of CV, the ECSA attenuation rates of Pt/Co-PPy-C and Pt/C were 13.0% and 24.0% respectively, which means that the Pt/Co-PPy-C catalyst has higher durability. The high performance of Pt/Co-PPy-C makes it a promising catalyst for proton exchange membrane fuel cells.
-
-
-
[1]
(1) Zhang, J.; Tang, S. H.; Liao, L. Y.; Yu,W. F. Chin. J. Catal. 2013, 34, 1051. [张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报, 2013, 34, 1051.]
-
[2]
(2) Wee, J. H.; Lee, K. Y.; Kim, S. H. J. Power Sources 2007, 165, 667. doi: 10.1016/j.jpowsour.2006.12.051
-
[3]
(3) Yin, S. B.; Mu, S. C.; Pan, M.; Fu, Z. Y. J. Power Sources 2011, 196, 7931. doi: 10.1016/j.jpowsour. 2011.05.033
-
[4]
(4) Yan, X. H. Zhang, G. R.; Xu, B. Q. Chin. J. Catal. 2013, 34, 1992. [严祥辉, 张贵荣, 徐柏庆. 催化学报, 2013, 34, 1992.]
-
[5]
(5) Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19, 265601. doi: 10.1088/0957-4484/19/26/265601
-
[6]
(6) He, D. P.; Zeng, C.; Xu, C.; Cheng, N. C.; Li, H. G.; Mu, S. C.; Pan, M. Langmuir 2011, 27, 5582. doi: 10.1021/la2003589
-
[7]
(7) Zhao, Y. C.; Lan, H. X.; Tian, J. N.; Yang, X. L.;Wang, F. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 2050. [赵彦春, 兰黄鲜, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2009, 25 (10), 2050.]
-
[8]
(8) Zhao, Y. C.; Lan, H. X.; Deng, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y. Acta Phys. -Chim. Sin. 2010, 26 (8), 2255. [赵彦春, 兰黄鲜, 邓彬彬, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2010, 26 (8), 2255.]
-
[9]
(9) Dai, X. F.; Zheng, M. F.; Xu, P.; Shi, J. J.; Ma, C. Y.; Qiao, J. L. Acta Phys. -Chim. Sin. 2013, 29 (8), 1753. [戴先逢, 郑明富, 徐攀, 石晶晶, 马承禺, 乔锦丽. 物理化学学报, 2013, 29 (8), 1753.]
-
[10]
(10) Li, S.;Wang, J. T.; Chen, R. X.; Zhao,W.; Qian, L.; Pan, M. Acta Phys. -Chim. Sin. 2013, 29 (4), 792. [李赏, 王家堂, 陈锐鑫, 赵伟, 钱柳, 潘牧. 物理化学学报, 2013, 29 (4), 792.]
-
[11]
(11) Bensebaa, F.; Farah, A. A.;Wang, D.; Bock, C.; Du, X. M.; Kung, J.; Page, Y. L. J. Phys. Chem. B 2005, 109 (32), 15339. doi: 10.1021/jp0519870
-
[12]
(12) Qiao, J. L.; Xu, L.; Ding, L.; Zhang, L.; Baker, R.; Dai, X. F.; Zhang, J. J. Appl. Catal. B-Environ. 2012, 125, 197.
-
[13]
(13) Ding, L.; Qiao, J. L.; Dai, X. F.; Zhang, J.; Zhang, J. J.; Tian, B. L. Int. J. Hydrog. Energy 2012, 37 (19), 14103. doi: 10.1016/j.ijhydene.2012.07.046
-
[14]
(14) Zhang, H. J.; Li, H. L.; Li, X. T.; Qiu, H. X.; Yuan, X. X.; Zhao, B.; Ma, Z. F.; Yang, J. H. Int. J. Hydrog. Energy 2014, 39 (1), 267. doi: 10.1016/j.ijhydene.2013.09.084
-
[15]
(15) Zhang, H. J.; Yuan, X. X.;Wang, Z. H.; Yang, J. H.; Ma, Z. F. Electrochim. Acta 2013, 87, 599. doi: 10.1016/j. electacta.2012.10.019
-
[16]
(16) Huang, S. Y.; Ganesan, P.; Popov, B. N. Appl. Catal. B-Environ. 2009, 93, 75. doi: 10.1016/j.apcatb.2009.09.014
-
[17]
(17) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.
-
[18]
(18) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M. J. Power Sources 2008, 184, 375. doi: 10.1016/j.jpowsour.2008.03.024
-
[19]
(19) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M.; Li, H. Electrochem. Commun. 2008, 10, 876. doi: 10.1016/j.elecom.2008.04.005
-
[20]
(20) Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B.; Garche, J. Encyclopedia of Electrochemical Power Sources, 1st ed.; Elsevier Science Ltd: Amsterdam. 2009, pp 639-649.
-
[21]
(21) Tian, J.; Birry, L.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2011, 56 (9), 3276. doi: 10.1016/j.electacta.2011.01.029
-
[22]
(22) Jaouen, F.; ellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057
-
[23]
(23) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.
-
[24]
(24) Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. doi: 10.1038/nature05118
-
[25]
(25) Lee, K. C.; Zhang, L.; Lui, H. S.; Hui, R.; Shi, Z.; Zhang, J. J. Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j. electacta. 2009.03.081
-
[26]
(26) Nguyen-Thanh, D.; Frenkel, A. I.;Wang, J. Q.; O′Brien, S.; Akins, D. L. Appl. Catal. B-Environ. 2011, 105, 50. doi: 10.1016/j.apcatb.2011.03.034
-
[27]
(27) Yu,W. Y.; Tu,W. X.; Liu, H. F. Langmuir 1999, 15 (1), 6. doi: 10.1021/la9806505
-
[28]
(28) Gan, L.; Du, H. D.; Li, B. H.; Kang, F. Y. New Carbon Mater. 2010, 25, 53. doi: 10.1016/S1872-5805(09)60015-9
-
[29]
(29) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.;Wagner, F. T. Appl. Catal. B-Environ. 2005, 56, 9. doi: 10.1016/j.apcatb.2004.06.021
-
[30]
(30) Vivek, S. M.; Elise, I.;Wu, B.; Lesia, P. V. D. Highly Dispersed Alloy Catalyst for Durability. http://www. hydrogen. energy. v/pdfs/progress11/v_d_2_murthi_2011.pdf (accessed Mar 20, 2014)
-
[31]
(31) Lee, M. H.; Do, J. S. J. Power Sources 2009, 188, 353. doi: 10.1016/j.jpowsour.2008.12.051
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[7]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[8]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[9]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[10]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[11]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[12]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[13]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[14]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[15]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[17]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[18]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[19]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[20]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[1]
Metrics
- PDF Downloads(627)
- Abstract views(738)
- HTML views(2)