Citation: YAN Jing-Sen, WANG Hai-Yan, ZHANG Jing-Ru, XU Hui-Juan. Effect of TiO2-Al2O3 Support Preparation Technique on Hydrodenitrogenation of Ni2P/TiO2-Al2O3 Catalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1309-1317. doi: 10.3866/PKU.WHXB201405043 shu

Effect of TiO2-Al2O3 Support Preparation Technique on Hydrodenitrogenation of Ni2P/TiO2-Al2O3 Catalysts

  • Received Date: 11 February 2014
    Available Online: 4 May 2014

  • TiO2-Al2O3 composite supports were prepared by in situ sol-gel and co-precipitation methods, and the supported nickel phosphide catalysts were prepared by incipient wetness impregnation and the in situ H2 reduction method. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption (BET), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), and inductive couple plasma atomic emission spectrometry techniques (ICP-AES). The hydrodenitrogenation (HDN) activity of the supported nickel phosphide catalysts were evaluated on a continuousflow fixed-bed reactor using quinoline as the model molecule. The results showed that the composite support prepared by the in situ sol-gel method basically retained the original pore properties of γ-Al2O3 but with a larger surface area and decentralized pore size distribution, and TiO2 was enriched on the tubular γ-Al2O3 surface. The composite support prepared by the co-precipitation method had a smaller surface area and a centralized pore size distribution, and TiO2 was evenly dispersed on the massive γ-Al2O3 surface. The main active phases after reduction were Ni2P and Ni12P5 for the catalyst supported on sol-gel prepared TiO2-Al2O3, but only Ni2P for the catalyst supported on co-precipitated TiO2-Al2O3. Different TiO2-Al2O3 preparation techniques and different Ti/Al atomic ratios had a great effect on the HDN activity of the catalysts. The catalyst supported on co-precipitated TiO2-Al2O3 exhibited better reducibility and HDN activity than the catalyst supported on in situ sol-gel prepared TiO2-Al2O3. The optimal HDN activity occurred for the catalyst supported on co-precipitated TiO2-Al2O3 with an initial Ti/Al atomic ratio of 1:8. At a reaction temperature of 340 ℃, pressure of 3 MPa, hydrogen/oil volume ratio of 500, and liquid hourly space velocity of 3 h-1, the HDN conversion of quinoline was 91.3%.

  • 加载中
    1. [1]

      (1) Oyama, S. T. J. Catal. 2003, 216 (2), 343.

    2. [2]

      (2) Oyama, S. T.; tt, T.; Zhao, H.; Lee, Y. K. Catal. Today 2009, 143, 94. doi: 10.1016/j.cattod.2008.09.019

    3. [3]

      (3) Clark, P. A.; Oyama, S. T. J. Catal. 2003, 218, 78. doi: 10.1016/S0021-9517(03)00086-1

    4. [4]

      (4) Yan, J. S.;Wang, A. J.; Li, X.; Lu, M. H.; Hu, Y. K. Acta Pet. Sin., Pet. Process. Sect. 2006, 22 (3),1. [鄢景森, 王安杰, 李翔, 鲁墨弘, 胡永康. 石油学报(石油加工), 2006, 22 (3), 1.]

    5. [5]

      (5) Wang, A. J.; Ruan, L. F.; Teng, Y.; Li, X.; Lu, M. H.; Ren, J.; Wang, Y.; Hu, Y. K. J. Catal. 2005, 229 (2), 314. doi: 10.1016/j.jcat.2004.09.022

    6. [6]

      (6) Shu, Y.; Oyama, S. T. Carbon 2005, 43, 1517.

    7. [7]

      (7) Tamás, I. K.; Zdeněk, V.; Dilip, G. P.; Ryong, R.; Hei, S. K.; Emiel, J. M.; Hensen, E. J. M. J. Catal. 2008, 253, 119. doi:10.1016/j.jcat.2007.10.012

    8. [8]

      (8) Guo, C. Y.; Shen, Z. Q.; Zhang, Z. M. Chem. Ind. Eng. Prog. 2011, 30 (1), 1482.

    9. [9]

      (9) Wei, Z. B.; Xin, Q.; Guo, X. X. Appl. Catal. 1990, 63 (1), 305. doi: 10.1016/S0166-9834(00)81721-2

    10. [10]

      (10) Li, Z.; Quan, Y. H.; Chang, Y. J. Mol. Catal. 2007, 21 (5), 417. [李哲, 权燕红, 常瑜. 分子催化, 2007, 21 (5), 417.]

    11. [11]

      (11) Luo, S. C.; Gui, L. L.; Tang, Y. Q. Acta Phys. -Chim. Sin. 1996, 12 (1), 6. [ 罗胜成, 桂琳琳, 唐有祺. 物理化学学报, 1996, 12 (1), 6.]

    12. [12]

      (12) Song, H.; Dai, M.; Guo, Y. T.; Zhang, Y. J. Fuel Process. Technol. 2012, 96, 228. doi: 10.1016/j.fuproc.2012.01.001

    13. [13]

      (13) Xin, Q.; Luo, M. F. Modern Catalysis Research Methods; Science Press: Beijing, 2009; pp 1-59 [辛勤, 罗孟飞. 现代催化研究方法. 北京: 科学出版社, 2009: 1-59.]

    14. [14]

      (14) Qu, B. L.; Chai, Y. M.; Xiang, C. E.; Zhang, J. C.; Liu, C. G. Acta Pet. Sin. (Petro. Pro. Set.) 2009, 25 (4), 496. [曲本连, 柴永明, 相春娥, 张景成, 刘晨光. 石油学报(石油加工), 2009, 25 (4), 496.]

    15. [15]

      (15) Shi, Y. Y. Effect of Support Calcination Temperature on Structure and Performance of Al2O3-Supported Nickel Phosphide Catalysts. MS. Dissertation, Tianjin University, Tianjin, 2010. [史媛媛. 载体焙烧温度对氧化铝负载磷化镍结构及HDC性能的影响[D]. 天津: 天津大学, 2010.]

    16. [16]

      (16) Clark, P. A.; Oyama, S. T. J. Catal. 2003, 218, 78.

    17. [17]

      (17) Burattin, P.; Che, M.; Louis, C. J. Phys. Chem. B 2000, 104 (45), 10482.

    18. [18]

      (18) de Bokx, P. K.; Bonne, R. L. C.; Geus, J.W. Appl. Catal. 1987, 30 (1), 33. doi: 10.1016/S0166-9834(00)81009-X

    19. [19]

      (19) Li, M. F.; Li, H. F.; Jiang, F.; Chu, Y.; Nie, H. Fuel 2009, 88, 1281. doi: 10.1016/j.fuel.2009.01.001

    20. [20]

      (20) Yang, Z. H.; Li, L. C.;Wang, Y. F.; Liu, J. L.; Feng, X.; Lu, X. H. Chin. J. Catal. 2012, 33 (3), 508. [杨祝红, 李力成, 王艳芳, 刘金龙, 冯新, 陆小华. 催化学报, 2012, 33 (3), 508.]

    21. [21]

      (21) Ramirez, J.; Macias, G.; Cedeño, L.; Gutierrez-Alejandre, A.; Cuevas, R.; Castillo, P. Catal. Today 2004, 98 (1), 19.

    22. [22]

      (22) Sawhill, S. J.; Layman, K. A.; vanWyk, D. R.; Engelhard, M. H.;Wang, C.; Bussell, M. E. J. Catal. 2005, 231, 300.

    23. [23]

      (23) Jian, M.; Prins, R. J. Catal. 1998, 179 (1), 18. doi: 10.1006/jcat.1998.2181

    24. [24]

      (24) Satterfield, C. N.; Cocchetto, J. F. Ind. Eng. Chem. Proc. Des. Dev. 1981, 20 (1), 53.

    25. [25]

      (25) Lu, M. H. Preparation and Performance of Nickel Phosphide Catalyst for Hydrodenitrogenation. Ph.D. Dissertation, Dalian: Dalian University Technology, 2007. [鲁墨弘. 磷化镍催化剂的制备及其加氢脱氮反应性能研究[D]. 大连: 大连理工大学, 2007.]

    26. [26]

      (26) Sawhill, S. J.; Phillips, D. C.; Bussell, M. E. J. Catal. 2003, 215, 208.

    27. [27]

      (27) Oyama, S. T.;Wang, X.; Lee, Y. K.; Bandob, K.; Requejo, F. G. J. Catal. 2002, 210 (1), 207. doi: 10.1006/jcat.2002.3681


  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

Metrics
  • PDF Downloads(401)
  • Abstract views(408)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return