Citation: ZHAO Jian, ZHOU Wei, MA Jian-Xin. Effect of CO2 Pretreatment Operation Conditions on the Catalytic Performance and Structure of Ni-Co Bimetallic Catalyst[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1325-1331. doi: 10.3866/PKU.WHXB201405042 shu

Effect of CO2 Pretreatment Operation Conditions on the Catalytic Performance and Structure of Ni-Co Bimetallic Catalyst

  • Received Date: 6 February 2014
    Available Online: 4 May 2014

    Fund Project:

  • The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. Thereby, great catalytic activity and stability could be obtained during the dry reforming of methane reaction.

  • 加载中
    1. [1]

      (1) Lombardi, L.; Carnevale, E.; Corti, A. Energy 2006, 31, 3208. doi: 10.1016/j.energy.2006.03.034

    2. [2]

      (2) Zhang, Z. G.; Xu, G.W.; Chen, X.; Honda, K.; Yoshida, T. Fuel Process Technol. 2004, 85, 1213. doi: 10.1016/j.fuproc.2003.10.017

    3. [3]

      (3) Purwanto, H.; Akiyama, T. Int. J. Hydrog. Energy 2006, 31, 491. doi: 10.1016/j.ijhydene.2005.04.021

    4. [4]

      (4) Effendi, A.; Hellgardt, K.; Zhang, Z. G.; Yoshida, T. Fuel 2005, 84, 869.

    5. [5]

      (5) ula, G.; Kiousis, V.; Nalbandian, L.; Yentekakis, I.V. Solid State Ionics 2006, 177, 2119.

    6. [6]

      (6) Kolbitsch, P.; Pfeifer, C.; Hofbauer, H. Fuel 2008, 87, 701.

    7. [7]

      (7) Muradov, N.; Smith, F.; T-Raissi, A. Int. J. Hydrog. Energy 2008, 33, 2023. doi: 10.1016/j.ijhydene.2008.02.026

    8. [8]

      (8) Barrai, F.; Jackson, T.; Whitmore, N.; Castaldi, M. J. Catal. Today 2007, 129, 391. doi: 10.1016/j.cattod.2007.07.024

    9. [9]

      (9) Effendi, A.; Zhang, Z. G.; Hellgardt, K.; Hondaa, K.; Yoshida, T. Catal. Today 2002, 77, 181. doi: 10.1016/S0920-5861(02)00244-4

    10. [10]

      (10) Zanganeh, R.; Rezaei, M.; Zamaniyan, A. Int. J. Hydrog. Energy 2013, 38, 3012.

    11. [11]

      (11) Shang, R.; Guo, X.; Mu, S.;Wang, Y.; Jin, G.; Kosslick, H. Int. J. Hydrog. Energy 2011, 36, 4900.

    12. [12]

      (12) Serrano-Lotina, A.; Daza, L. J. Power Sources 2013, 238, 81.

    13. [13]

      (13) Solymosi, F.; Kutsan, G.; Erdöhelyi, A. Catal. Lett. 1991, 11, 149.

    14. [14]

      (14) Múnera, J. F.; Irusta, S.; Cornaglia, L. M.; Lombardo, E. A.; Vargas Cesar, D.; Schmal, M. J. Catal. 2007, 245, 25.

    15. [15]

      (15) Zhang,W. D.; Liu, B. S.; Zhu, C.; Tian, Y. L. Appl. Catal. A 2005, 292, 138.

    16. [16]

      (16) Rostrup-Nielsen, J. R. Studies in Surface Science and Catalysis 1988, 36, 73.

    17. [17]

      (17) Zhang, J.;Wang, H.; Dalai, A. K. Appl. Catal. A 2008, 339, 121.

    18. [18]

      (18) Foo, S. Y.; Cheng, C. K.; Nguyen, T. H.; Kennedy, E. M.; Dlu rski, B. Z.; Adesina, A. A. Catal. Commun. 2012, 26, 183.

    19. [19]

      (19) Hu, Y. H.; Ruckenstein, E. Adv. Catal. 2004, 48, 297.

    20. [20]

      (20) Kado, S.; Urasaki, K.; Sekine, Y.; Fujimoto, K. Chem. Commun. 2001, No. 5, 415.

    21. [21]

      (21) Nagai, M.; Nakahira, K.; Ozawa, Y.; Namiki, Y.; Suzuki, Y. Chem. Eng. Sci. 2007, 62, 4998.

    22. [22]

      (22) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. J. Catal. 1999, 184, 479.

    23. [23]

      (23) Green, M. L. H.; Xiao, T. C. Activation Route for Cobalt Compound Based and Carried Catalysts. CN Patent 1541139A, 2004-01-27. [马尔科姆·莱斯利·候德·格林, 肖天存. 含有钴化合物和载体的催化剂的活化方法: 中国, CN1541139A[P]. 2004-01-27.]

    24. [24]

      (24) Husserl, J. J.; Velen, J. P. V. M. J.; Koser, R. Activation Route of Catalysts for Fischer Tropsch Synthesis. CN Patent 101796166A, 2010-08-04. [胡塞尔·J·J, 扬塞梵维伦·M·J, 科泽·R. 费-托催化剂的活化方法: 中国, CN101796166A[P]. 2010-08-04.]

    25. [25]

      (25) Zhao, J.; Zhou,W.; Xu, J. K.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 806. [赵健, 周伟, 徐军科, 马建新. 物理化学学报, 2013, 29, 806.]

    26. [26]

      (26) Zhao, J.; Zhou,W.; Xu, J. K.; Ma, J. X. Chin. J. Catal. 2013, 34, 1826. [赵健, 周伟, 徐军科, 周伟, 马建新. 催化学报, 2013, 34, 1826.]

    27. [27]

      (27) Solymosi, F. J. Mol. Catal. 1991, 65, 337.

    28. [28]

      (28) Erdohelyi, A.; Cserenyi, J.; Solymosi, F. J. Catal. 1993, 141, 287.

    29. [29]

      (29) Solymosi, F.; Erdöhelyi, A.; Cserényi, J. Catal. Lett. 1992, 16, 399.

    30. [30]

      (30) Benito, M.; García, S.; Ferreira-Aparicio, P.; García Serrano, L.; Daza, L. J. Power Sources 2007, 169, 177.

    31. [31]

      (31) Xu, J. K.; Li, Z. J.;Wang, J. H.; Zhou,W.; Ma, J. X. Acta Phys. -Chim. Sin. 2009, 25, 253. [徐军科, 李兆静, 汪吉辉, 周伟, 马建新. 物理化学学报, 2009, 25, 253.]

    32. [32]

      (32) Serrano-Lotina, A.; Daza, L. J. Power Sources 2013, 238, 81.

    33. [33]

      (33) Xu, J. K.; Zhou,W.; Li, Z. J.;Wang, J. H.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 6646.

    34. [34]

      (34) Patterson, A. L. Phys. Rev. 1939, 56, 978. doi: 10.1103/PhysRev.56.978

    35. [35]

      (35) Chen, D.; Lødeng, R.; Anundskås, A.; Olsvik, O.; Holmen, A. Chem. Eng. Sci. 2001, 56, 1371. doi: 10.1016/S0009-2509(00)00360-2

    36. [36]

      (36) Kim, J. H.; Suh, D. J.; Park, T. J.; Kim, K. L. Appl. Catal. AGen. 2000, 197, 191.

    37. [37]

      (37) Freund, H. J.; Messmer, R. P. Surf. Sci. 1986, 172, 1.

    38. [38]

      (38) Uetsuka, H.;Watanabe, K.; Kunimori, K. Surf. Sci. 1996, 363, 73.

    39. [39]

      (39) Dvelyn, M. P.; Hamza, A. V.; Gdowski, G. E. Surf. Sci. 1986, 167, 451.

    40. [40]

      (40) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. J. Catal. 1998, 184, 479.


  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(350)
  • Abstract views(443)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return