Citation: OUYANG Mi, WU Qi-Chao, YU Zhen-Wei, LI Hong-Fei, ZHANG Cheng. Synthesis and Photoelectrical Properties of Two Potential Solution-Processed Blue Fluorescent Emitters Based on Fluorene-Arylamine Derivatives End-Capped with Anthracene/Pyrene Molecules[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1341-1346. doi: 10.3866/PKU.WHXB201405041 shu

Synthesis and Photoelectrical Properties of Two Potential Solution-Processed Blue Fluorescent Emitters Based on Fluorene-Arylamine Derivatives End-Capped with Anthracene/Pyrene Molecules

  • Received Date: 24 January 2014
    Available Online: 4 May 2014

    Fund Project:

  • Two novel potential solution-processed blue fluorescent emitters composed of a core fluorenediphenylamine unit capped with either anthracene (FAn) or pyrene (FPy) were synthesized and characterized. They were both soluble in common organic solvents and solutions gave smooth films after spin coating. Their optical properties in solution and in the film were investigated by UV-visible and photoluminescence (PL) spectroscopy. The PL emission maximum of FAn and FPy in the film state were found to be 449 and 465 nm, respectively. The electrochemical properties of the as-prepared samples were studied by cyclic voltammetry. The estimated highest occupied molecular orbital (HOMO) energy levels were -5.37 and -5.36 eV for FAn and FPy, respectively. These results indicate that the introduction of diphenylamine effectively prevents plane stacking of the molecules in the solid state, which suppresses the formation of long-wavelength aggregates, and the high HOMO levels enhance the hole-injection ability of the compounds. The results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicate that the two materials have excellent thermal stability with the glass transition temperature of FAn reaching 207 ℃ and the thermal decomposition temperature as high as 439 ℃. The od performance of the fluorescent emitters makes them promising candidates as solution-processed blue organic light-emitting diodes.

  • 加载中
    1. [1]

      (1) Tang, C.W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51 (12), 913. doi: 10.1063/1.98799

    2. [2]

      (2) Uoyama, H.; ushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492 (7428), 234. doi: 10.1038/nature11687

    3. [3]

      (3) Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267 (5202), 1332. doi: 10.1126/science.267.5202.1332

    4. [4]

      (4) Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature 2003, 421 (6925), 829. doi: 10.1038/nature01390

    5. [5]

      (5) Liu, C.; Li, Y. H.; Li, Y. F.; Yang, C. L.;Wu, H. B.; Qin, J. G.; Cao, Y. Chem. Mat. 2013, 25 (16), 3320. doi: 10.1021/cm401640v

    6. [6]

      (6) Trattnig, R.; Pevzner, L.; Jager, M.; Schlesinger, R.; Nardi, M. V.; Li rio, G.; Christodoulou, C.; Koch, N.; Baumgarten, M.; Mullen, K.; List, E. J.W. Adv. Funct. Mater. 2013, 23 (39), 4897. doi: 10.1002/adfm.v23.39

    7. [7]

      (7) Wang, C. F.; Hung,W. Y.; Cheng, M. H.; Hwang, J. S.; Leung, M. K.;Wong, K. T. Org. Electron. 2013, 14 (8), 1958. doi: 10.1016/j.orgel.2013.04.047

    8. [8]

      (8) Zuniga, C. A.; Barlow, S.; Marder, S. R. Chem. Mat. 2011, 23 (3), 658. doi: 10.1021/cm102401k

    9. [9]

      (9) Okumoto, K.; Kanno, H.; Hamaa, Y.; Takahashi, H.; Shibata, K. Appl. Phys. Lett. 2006, 89 (6), 063504. doi: 10.1063/1.2266452

    10. [10]

      (10) Zhu, M. R.; Yang, C. L. Chem. Soc. Rev. 2013, 42 (12), 4963. doi: 10.1039/c3cs35440g

    11. [11]

      (11) Chen, C. T. Chem. Mat. 2004, 16 (23), 4389. doi: 10.1021/cm049679m

    12. [12]

      (12) Xiao, L. X.; Hu, S. Y.; Kong, S.; Chen, Z. J.; Qu, B.; ng, Q. H. Acta Phys. -Chim. Sin. 2011, 27 (4), 977. [肖立新, 胡双元, 孔胜, 陈志坚, 曲波, 龚旗煌. 物理化学学报, 2011, 27 (4), 977.]

    13. [13]

      (13) Zhang, L.; Lin, Z. Q.; Gu, J. F.; Yin, C. R.; Hou, X. Y.; Liu, F.; Liu, Y. Y.; Xie, L. H.; Chen, S. F.; Huang,W. Acta Phys.-Chim. Sin. 2010, 26 (7), 1934. [张龙, 林宗琼, 顾菊芬, 殷成蓉, 侯晓雅, 刘烽, 刘玉玉, 解令海, 陈淑芬, 黄维. 物理化学学报, 2012, 26 (7), 1934.]

    14. [14]

      (14) Chu, Z. Z.;Wang, D.; Zhang, C.; Zou, D. C. Acta Phys. -Chim. Sin. 2012, 28 (8), 2000. [初增泽, 王丹, 张超, 邹德春.物理化学学报, 2012, 28 (8), 2000.]

    15. [15]

      (15) Wu, K. C.; Ku, P. J.; Lin, C. S.; Shih, H. T.;Wu, F. I.; Huang, M. J.; Lin, J. J.; Chen, I. C.; Cheng, C. H. Adv. Funct. Mater. 2008, 18 (1), 67.

    16. [16]

      (16) Chan, K. L.; Lim, J. P. F.; Yang, X. H.; Dodabalapur, A.; Jabbour, G. E.; Sellinger, A. Chem. Commun. 2012, 48 (42), 5106. doi: 10.1039/c2cc30995e

    17. [17]

      (17) Hu, J. Y.; Era, M.; Else od, M. R. J.; Yamato, T. Eur. J. Org. Chem. 2010, 2010 (1), 72. doi: 10.1002/ejoc.200900806

    18. [18]

      (18) Kim, R.; Lee, S.; Kim, K. H.; Lee, Y. J.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Chem. Commun. 2013, 49 (41), 4664. doi: 10.1039/c3cc41441h

    19. [19]

      (19) Park, H.; Lee, J.; Kang, I.; Chu, H. Y.; Lee, J. I.; Kwon, S. K.; Kim, Y. H. J. Mater. Chem. 2012, 22 (6), 2695. doi: 10.1039/c2jm16056k

    20. [20]

      (20) Kumar, D.; Thomas, K. R. J.; Chen, Y. L.; Jou, Y. C.; Jou, J. H. Tetrahedron 2013, 69 (12), 2594. doi: 10.1016/j.tet.2013.01.046

    21. [21]

      (21) Yao, L.; Sun, S. H.; Xue, S. F.; Zhang, S. T.;Wu, X. Y.; Zhang, H. H.; Pan, Y. Y.; Gu, C.; Li, F. H.; Ma, Y. G. J. Phys. Chem. C 2013, 117 (27), 14189. doi: 10.1021/jp403463k

    22. [22]

      (22) Zhang, Y. J.; Jin, Y. X.; Bai, R.; Yu, Z.W.; Hu, B.; Ouyang, M.; Sun, J.W.; Yu, C. H.; Liu, J. L.; Zhang, C. J. Photochem. Photobiol. A-Chem. 2012, 227 (1), 59. doi: 10.1016/j.jphotochem.2011.11.003

    23. [23]

      (23) Taguchi, Y.; Uyama, H.; Kobayashi, S. J. Polym. Sci. Pol. Chem. 1996, 34 (4), 561.

    24. [24]

      (24) Hong, Y.; Liao, J. Y.; Cao, D.; Zang, X.; Kuang, D. B.;Wang, L.; Meier, H.; Su, C. Y. J. Org. Chem. 2011, 76 (19), 8015. doi: 10.1021/jo201057b

    25. [25]

      (25) Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. J. Org. Chem. 2010, 75 (12), 4124. doi: 10.1021/jo100277v


  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    6. [6]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    7. [7]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    8. [8]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    9. [9]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    10. [10]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(429)
  • Abstract views(531)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return