Citation: YU Da-Qi, TU Yu-Hai, LAI Lu-Hua. Molecular Interactions of Bacterial Chemoreceptor Assemblies[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1347-1353. doi: 10.3866/PKU.WHXB201404301
-
Bacterial chemoreceptors form homodimers that assemble into large clusters on cell membranes to respond to external signals. These clusters have been found to have two different types of patterns: one is composed of inverted pyramid like trimers-of-dimers observed in the X-ray crystal structures, and the other is formed by the zipper like overlap of tips of dimers, as revealed by low-resolution electron microscopy. The detailed molecular model of the zipper like assemblies has remained unknown until now. Using protein-protein docking method, we studied the interactions between serine chemoreceptor Tsr dimers in Escherichia coli. The basic complexes for the two types of clustering patterns were both found in the docking complexes. Molecular dynamics simulations confirmed that these complexes were stable to a certain extent. Protein-protein interface analysis indicated that electrostatic and hydrophobic interactions are the dominant driving forces for zipper like complex formation. Arg388, Phe373, and Ile377 are the key interfacial residues that stabilize the zipper like complexes. The molecular models for the zipper like complexes provide insight into the mechanisms of bacterial chemoreceptor assemblies on membranes and serve as a basis for further theoretical and simulation studies.
-
-
[1]
(1) Adler, J. Annu. Rev. Biochem. 1975, 44 (1), 341. doi: 10.1146/annurev.bi.44.070175.002013
-
[2]
(2) Adler, J.; Tso,W.W. Science 1974, 184 (4143), 1292. doi: 10.1126/science.184.4143.1292
-
[3]
(3) Hazelbauer, G. L.; Falke, J. J.; Parkinson, J. S. Trends Biochem. Sci. 2008, 33 (1), 9. doi: 10.1016/j.tibs.2007.09.014
-
[4]
(4) Tu, Y. Annual Review of Biophysics 2013, 42, 337. doi: 10.1146/annurev-biophys-083012-130358
-
[5]
(5) Ottemann, K. M.; Xiao,W.; Shin, Y. K.; Koshland, D. E., Jr. Science 1999, 285 (5434), 1751. doi: 10.1126/science.285.5434.1751
-
[6]
(6) Bi, S.; Yu, D.; Si, G.; Luo, C.; Li, T.; Ouyang, Q.; Jakovljevic, V.; Sourjik, V.; Tu, Y.; Lai, L. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (42), 16814. doi: 10.1073/pnas.1306811110
-
[7]
(7) Kim, K. K.; Yokota, H.; Kim, S. H. Nature 1999, 400 (6746), 787. doi: 10.1038/23512
-
[8]
(8) Maddock, J. R.; Shapiro, L. Science 1993, 259 (5102), 1717. doi: 10.1126/science.8456299
-
[9]
(9) Greenfield, D.; McEvoy, A. L.; Shroff, H.; Crooks, G. E.; Wingreen, N. S.; Betzig, E.; Liphardt, J. PLoS Biol. 2009, 7 (6), e1000137. doi: 10.1371/journal.pbio.1000137
-
[10]
(10) Bray, D.; Levin, M. D.; Morton-Firth, C. J. Nature 1998, 393 (6680), 85. doi: 10.1038/30018
-
[11]
(11) Weis, R. M.; Hirai, T.; Chalah, A.; Kessel, M.; Peters, P. J.; Subramaniam, S. J. Bacteriol. 2003, 185 (12), 3636. doi: 10.1128/JB.185.12.3636-3643.2003
-
[12]
(12) Lefman, J.; Zhang, P.; Hirai, T.;Weis, R. M.; Juliani, J.; Bliss, D.; Kessel, M.; Bos, E.; Peters, P. J.; Subramaniam, S. J. Bacteriol. 2004, 186 (15), 5052. doi: 10.1128/JB.186.15.5052-5061.2004
-
[13]
(13) Francis, N. R.; Levit, M. N.; Shaikh, T. R.; Melanson, L. A.; Stock, J. B.; DeRosier, D. J. J. Biol. Chem. 2002, 277 (39), 36755. doi: 10.1074/jbc.M204324200
-
[14]
(14) Zhang, P.; Khursigara, C. M.; Hartnell, L. M.; Subramaniam, S. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (10), 3777. doi: 10.1073/pnas.0610106104
-
[15]
(15) Zhang, C. S.; Lai, L. H. Acta Phys. -Chim. Sin. 2012, 28, 2363. [张长胜, 来鲁华. 物理化学学报, 2012, 28, 2363.] doi: 10.3866/PKU.WHXB201209172
-
[16]
(16) Mintseris, J.; Pierce, B.;Wiehe, K.; Anderson, R.; Chen, R.; Weng, Z. Proteins 2007, 69 (3), 511. doi: 10.1002/prot.21502
-
[17]
(17) Mackerell, A. D., Jr.; Feig, M.; Brooks, C. L., III. J. Comput. Chem. 2004, 25 (11), 1400. doi: 10.1002/jcc.v25:11
-
[18]
(18) Im,W.; Lee, M. S.; Brooks, C. L., 3rd. J. Comput. Chem. 2003, 24 (14), 1691. doi: 10.1002/jcc.10321
-
[19]
(19) Brooks, B. R.; Brooks, C. L., 3rd.; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.;Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.;Woodcock, H. L.;Wu, X.; Yang,W.; York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30 (10), 1545. doi: 10.1002/jcc.v30:10
-
[20]
(20) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q
-
[21]
(21) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen,W. L. J. Phys. Chem. B 2001, 105 (28), 6474. doi: 10.1021/jp003919d
-
[22]
(22) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869
-
[23]
(23) Vaknin, A.; Berg, H. C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (3), 592. doi: 10.1073/pnas.0510047103
-
[24]
(24) Shimizu, T. S.; Le Novere, N.; Levin, M. D.; Beavil, A. J.; Sutton, B. J.; Bray, D. Nat. Cell Biol. 2000, 2 (11), 792. doi: 10.1038/35041030
-
[25]
(25) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (18), 10037. doi: 10.1073/pnas.181342398
-
[26]
(26) Gao, Y.;Wang, R.; Lai, L. H. J. Mol. Model. 2004, 10 (1), 44. doi: 10.1007/s00894-003-0168-3
-
[27]
(27) Gao, Y.;Wang, R. X.; Lai, L. H. Acta Phys. -Chim. Sin. 2002, 18, 676. [高莹, 王任小, 来鲁华. 物理化学学报, 2002, 18, 676.] doi: 10.3866/PKU.WHXB20020802
-
[28]
(28) Mowery, P.; Ostler, J. B.; Parkinson, J. S. J. Bacteriol. 2008, 190 (24), 8065. doi: 10.1128/JB.01121-08
-
[29]
(29) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E. Ann. Rev. Biophy. 2012, 41, 429. doi: 10.1146/annurev-biophys-042910-155245
-
[30]
(30) Saunders, M. G.; Voth, G. A. Ann. Rev. Biophy. 2013, 42, 73. doi: 10.1146/annurev-biophys-083012-130348
-
[31]
(31) Guigas, G.; Morozova, D.;Weiss, M. Adv. Protein Chem. Struct. Biol. 2011, 85 143. doi: 10.1016/B978-0-12-386485-7.00004-1
-
[32]
(32) Chen, M. L.;Wang, L. X.; Chen, S. S.; Liu, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 1201. [陈美玲, 汪理想, 陈姗姗, 刘晓亚. 物理化学学报, 2013, 29, 1201.] doi: 10.3866/PKU.WHXB201303202
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[8]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[10]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[11]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[12]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[13]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[14]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[15]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[16]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[17]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[18]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[19]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[20]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[1]
Metrics
- PDF Downloads(393)
- Abstract views(470)
- HTML views(2)