Citation: YU Da-Qi, TU Yu-Hai, LAI Lu-Hua. Molecular Interactions of Bacterial Chemoreceptor Assemblies[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1347-1353. doi: 10.3866/PKU.WHXB201404301 shu

Molecular Interactions of Bacterial Chemoreceptor Assemblies

  • Received Date: 15 April 2014
    Available Online: 30 April 2014

    Fund Project:

  • Bacterial chemoreceptors form homodimers that assemble into large clusters on cell membranes to respond to external signals. These clusters have been found to have two different types of patterns: one is composed of inverted pyramid like trimers-of-dimers observed in the X-ray crystal structures, and the other is formed by the zipper like overlap of tips of dimers, as revealed by low-resolution electron microscopy. The detailed molecular model of the zipper like assemblies has remained unknown until now. Using protein-protein docking method, we studied the interactions between serine chemoreceptor Tsr dimers in Escherichia coli. The basic complexes for the two types of clustering patterns were both found in the docking complexes. Molecular dynamics simulations confirmed that these complexes were stable to a certain extent. Protein-protein interface analysis indicated that electrostatic and hydrophobic interactions are the dominant driving forces for zipper like complex formation. Arg388, Phe373, and Ile377 are the key interfacial residues that stabilize the zipper like complexes. The molecular models for the zipper like complexes provide insight into the mechanisms of bacterial chemoreceptor assemblies on membranes and serve as a basis for further theoretical and simulation studies.

  • 加载中
    1. [1]

      (1) Adler, J. Annu. Rev. Biochem. 1975, 44 (1), 341. doi: 10.1146/annurev.bi.44.070175.002013

    2. [2]

      (2) Adler, J.; Tso,W.W. Science 1974, 184 (4143), 1292. doi: 10.1126/science.184.4143.1292

    3. [3]

      (3) Hazelbauer, G. L.; Falke, J. J.; Parkinson, J. S. Trends Biochem. Sci. 2008, 33 (1), 9. doi: 10.1016/j.tibs.2007.09.014

    4. [4]

      (4) Tu, Y. Annual Review of Biophysics 2013, 42, 337. doi: 10.1146/annurev-biophys-083012-130358

    5. [5]

      (5) Ottemann, K. M.; Xiao,W.; Shin, Y. K.; Koshland, D. E., Jr. Science 1999, 285 (5434), 1751. doi: 10.1126/science.285.5434.1751

    6. [6]

      (6) Bi, S.; Yu, D.; Si, G.; Luo, C.; Li, T.; Ouyang, Q.; Jakovljevic, V.; Sourjik, V.; Tu, Y.; Lai, L. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (42), 16814. doi: 10.1073/pnas.1306811110

    7. [7]

      (7) Kim, K. K.; Yokota, H.; Kim, S. H. Nature 1999, 400 (6746), 787. doi: 10.1038/23512

    8. [8]

      (8) Maddock, J. R.; Shapiro, L. Science 1993, 259 (5102), 1717. doi: 10.1126/science.8456299

    9. [9]

      (9) Greenfield, D.; McEvoy, A. L.; Shroff, H.; Crooks, G. E.; Wingreen, N. S.; Betzig, E.; Liphardt, J. PLoS Biol. 2009, 7 (6), e1000137. doi: 10.1371/journal.pbio.1000137

    10. [10]

      (10) Bray, D.; Levin, M. D.; Morton-Firth, C. J. Nature 1998, 393 (6680), 85. doi: 10.1038/30018

    11. [11]

      (11) Weis, R. M.; Hirai, T.; Chalah, A.; Kessel, M.; Peters, P. J.; Subramaniam, S. J. Bacteriol. 2003, 185 (12), 3636. doi: 10.1128/JB.185.12.3636-3643.2003

    12. [12]

      (12) Lefman, J.; Zhang, P.; Hirai, T.;Weis, R. M.; Juliani, J.; Bliss, D.; Kessel, M.; Bos, E.; Peters, P. J.; Subramaniam, S. J. Bacteriol. 2004, 186 (15), 5052. doi: 10.1128/JB.186.15.5052-5061.2004

    13. [13]

      (13) Francis, N. R.; Levit, M. N.; Shaikh, T. R.; Melanson, L. A.; Stock, J. B.; DeRosier, D. J. J. Biol. Chem. 2002, 277 (39), 36755. doi: 10.1074/jbc.M204324200

    14. [14]

      (14) Zhang, P.; Khursigara, C. M.; Hartnell, L. M.; Subramaniam, S. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (10), 3777. doi: 10.1073/pnas.0610106104

    15. [15]

      (15) Zhang, C. S.; Lai, L. H. Acta Phys. -Chim. Sin. 2012, 28, 2363. [张长胜, 来鲁华. 物理化学学报, 2012, 28, 2363.] doi: 10.3866/PKU.WHXB201209172

    16. [16]

      (16) Mintseris, J.; Pierce, B.;Wiehe, K.; Anderson, R.; Chen, R.; Weng, Z. Proteins 2007, 69 (3), 511. doi: 10.1002/prot.21502

    17. [17]

      (17) Mackerell, A. D., Jr.; Feig, M.; Brooks, C. L., III. J. Comput. Chem. 2004, 25 (11), 1400. doi: 10.1002/jcc.v25:11

    18. [18]

      (18) Im,W.; Lee, M. S.; Brooks, C. L., 3rd. J. Comput. Chem. 2003, 24 (14), 1691. doi: 10.1002/jcc.10321

    19. [19]

      (19) Brooks, B. R.; Brooks, C. L., 3rd.; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.;Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.;Woodcock, H. L.;Wu, X.; Yang,W.; York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30 (10), 1545. doi: 10.1002/jcc.v30:10

    20. [20]

      (20) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q

    21. [21]

      (21) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen,W. L. J. Phys. Chem. B 2001, 105 (28), 6474. doi: 10.1021/jp003919d

    22. [22]

      (22) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    23. [23]

      (23) Vaknin, A.; Berg, H. C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (3), 592. doi: 10.1073/pnas.0510047103

    24. [24]

      (24) Shimizu, T. S.; Le Novere, N.; Levin, M. D.; Beavil, A. J.; Sutton, B. J.; Bray, D. Nat. Cell Biol. 2000, 2 (11), 792. doi: 10.1038/35041030

    25. [25]

      (25) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (18), 10037. doi: 10.1073/pnas.181342398

    26. [26]

      (26) Gao, Y.;Wang, R.; Lai, L. H. J. Mol. Model. 2004, 10 (1), 44. doi: 10.1007/s00894-003-0168-3

    27. [27]

      (27) Gao, Y.;Wang, R. X.; Lai, L. H. Acta Phys. -Chim. Sin. 2002, 18, 676. [高莹, 王任小, 来鲁华. 物理化学学报, 2002, 18, 676.] doi: 10.3866/PKU.WHXB20020802

    28. [28]

      (28) Mowery, P.; Ostler, J. B.; Parkinson, J. S. J. Bacteriol. 2008, 190 (24), 8065. doi: 10.1128/JB.01121-08

    29. [29]

      (29) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E. Ann. Rev. Biophy. 2012, 41, 429. doi: 10.1146/annurev-biophys-042910-155245

    30. [30]

      (30) Saunders, M. G.; Voth, G. A. Ann. Rev. Biophy. 2013, 42, 73. doi: 10.1146/annurev-biophys-083012-130348

    31. [31]

      (31) Guigas, G.; Morozova, D.;Weiss, M. Adv. Protein Chem. Struct. Biol. 2011, 85 143. doi: 10.1016/B978-0-12-386485-7.00004-1

    32. [32]

      (32) Chen, M. L.;Wang, L. X.; Chen, S. S.; Liu, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 1201. [陈美玲, 汪理想, 陈姗姗, 刘晓亚. 物理化学学报, 2013, 29, 1201.] doi: 10.3866/PKU.WHXB201303202


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

Metrics
  • PDF Downloads(393)
  • Abstract views(470)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return