Citation: YU Da-Qi, TU Yu-Hai, LAI Lu-Hua. Molecular Interactions of Bacterial Chemoreceptor Assemblies[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1347-1353. doi: 10.3866/PKU.WHXB201404301 shu

Molecular Interactions of Bacterial Chemoreceptor Assemblies

  • Received Date: 15 April 2014
    Available Online: 30 April 2014

    Fund Project:

  • Bacterial chemoreceptors form homodimers that assemble into large clusters on cell membranes to respond to external signals. These clusters have been found to have two different types of patterns: one is composed of inverted pyramid like trimers-of-dimers observed in the X-ray crystal structures, and the other is formed by the zipper like overlap of tips of dimers, as revealed by low-resolution electron microscopy. The detailed molecular model of the zipper like assemblies has remained unknown until now. Using protein-protein docking method, we studied the interactions between serine chemoreceptor Tsr dimers in Escherichia coli. The basic complexes for the two types of clustering patterns were both found in the docking complexes. Molecular dynamics simulations confirmed that these complexes were stable to a certain extent. Protein-protein interface analysis indicated that electrostatic and hydrophobic interactions are the dominant driving forces for zipper like complex formation. Arg388, Phe373, and Ile377 are the key interfacial residues that stabilize the zipper like complexes. The molecular models for the zipper like complexes provide insight into the mechanisms of bacterial chemoreceptor assemblies on membranes and serve as a basis for further theoretical and simulation studies.

  • 加载中
    1. [1]

      (1) Adler, J. Annu. Rev. Biochem. 1975, 44 (1), 341. doi: 10.1146/annurev.bi.44.070175.002013

    2. [2]

      (2) Adler, J.; Tso,W.W. Science 1974, 184 (4143), 1292. doi: 10.1126/science.184.4143.1292

    3. [3]

      (3) Hazelbauer, G. L.; Falke, J. J.; Parkinson, J. S. Trends Biochem. Sci. 2008, 33 (1), 9. doi: 10.1016/j.tibs.2007.09.014

    4. [4]

      (4) Tu, Y. Annual Review of Biophysics 2013, 42, 337. doi: 10.1146/annurev-biophys-083012-130358

    5. [5]

      (5) Ottemann, K. M.; Xiao,W.; Shin, Y. K.; Koshland, D. E., Jr. Science 1999, 285 (5434), 1751. doi: 10.1126/science.285.5434.1751

    6. [6]

      (6) Bi, S.; Yu, D.; Si, G.; Luo, C.; Li, T.; Ouyang, Q.; Jakovljevic, V.; Sourjik, V.; Tu, Y.; Lai, L. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (42), 16814. doi: 10.1073/pnas.1306811110

    7. [7]

      (7) Kim, K. K.; Yokota, H.; Kim, S. H. Nature 1999, 400 (6746), 787. doi: 10.1038/23512

    8. [8]

      (8) Maddock, J. R.; Shapiro, L. Science 1993, 259 (5102), 1717. doi: 10.1126/science.8456299

    9. [9]

      (9) Greenfield, D.; McEvoy, A. L.; Shroff, H.; Crooks, G. E.; Wingreen, N. S.; Betzig, E.; Liphardt, J. PLoS Biol. 2009, 7 (6), e1000137. doi: 10.1371/journal.pbio.1000137

    10. [10]

      (10) Bray, D.; Levin, M. D.; Morton-Firth, C. J. Nature 1998, 393 (6680), 85. doi: 10.1038/30018

    11. [11]

      (11) Weis, R. M.; Hirai, T.; Chalah, A.; Kessel, M.; Peters, P. J.; Subramaniam, S. J. Bacteriol. 2003, 185 (12), 3636. doi: 10.1128/JB.185.12.3636-3643.2003

    12. [12]

      (12) Lefman, J.; Zhang, P.; Hirai, T.;Weis, R. M.; Juliani, J.; Bliss, D.; Kessel, M.; Bos, E.; Peters, P. J.; Subramaniam, S. J. Bacteriol. 2004, 186 (15), 5052. doi: 10.1128/JB.186.15.5052-5061.2004

    13. [13]

      (13) Francis, N. R.; Levit, M. N.; Shaikh, T. R.; Melanson, L. A.; Stock, J. B.; DeRosier, D. J. J. Biol. Chem. 2002, 277 (39), 36755. doi: 10.1074/jbc.M204324200

    14. [14]

      (14) Zhang, P.; Khursigara, C. M.; Hartnell, L. M.; Subramaniam, S. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (10), 3777. doi: 10.1073/pnas.0610106104

    15. [15]

      (15) Zhang, C. S.; Lai, L. H. Acta Phys. -Chim. Sin. 2012, 28, 2363. [张长胜, 来鲁华. 物理化学学报, 2012, 28, 2363.] doi: 10.3866/PKU.WHXB201209172

    16. [16]

      (16) Mintseris, J.; Pierce, B.;Wiehe, K.; Anderson, R.; Chen, R.; Weng, Z. Proteins 2007, 69 (3), 511. doi: 10.1002/prot.21502

    17. [17]

      (17) Mackerell, A. D., Jr.; Feig, M.; Brooks, C. L., III. J. Comput. Chem. 2004, 25 (11), 1400. doi: 10.1002/jcc.v25:11

    18. [18]

      (18) Im,W.; Lee, M. S.; Brooks, C. L., 3rd. J. Comput. Chem. 2003, 24 (14), 1691. doi: 10.1002/jcc.10321

    19. [19]

      (19) Brooks, B. R.; Brooks, C. L., 3rd.; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.;Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.;Woodcock, H. L.;Wu, X.; Yang,W.; York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30 (10), 1545. doi: 10.1002/jcc.v30:10

    20. [20]

      (20) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q

    21. [21]

      (21) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen,W. L. J. Phys. Chem. B 2001, 105 (28), 6474. doi: 10.1021/jp003919d

    22. [22]

      (22) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    23. [23]

      (23) Vaknin, A.; Berg, H. C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (3), 592. doi: 10.1073/pnas.0510047103

    24. [24]

      (24) Shimizu, T. S.; Le Novere, N.; Levin, M. D.; Beavil, A. J.; Sutton, B. J.; Bray, D. Nat. Cell Biol. 2000, 2 (11), 792. doi: 10.1038/35041030

    25. [25]

      (25) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (18), 10037. doi: 10.1073/pnas.181342398

    26. [26]

      (26) Gao, Y.;Wang, R.; Lai, L. H. J. Mol. Model. 2004, 10 (1), 44. doi: 10.1007/s00894-003-0168-3

    27. [27]

      (27) Gao, Y.;Wang, R. X.; Lai, L. H. Acta Phys. -Chim. Sin. 2002, 18, 676. [高莹, 王任小, 来鲁华. 物理化学学报, 2002, 18, 676.] doi: 10.3866/PKU.WHXB20020802

    28. [28]

      (28) Mowery, P.; Ostler, J. B.; Parkinson, J. S. J. Bacteriol. 2008, 190 (24), 8065. doi: 10.1128/JB.01121-08

    29. [29]

      (29) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E. Ann. Rev. Biophy. 2012, 41, 429. doi: 10.1146/annurev-biophys-042910-155245

    30. [30]

      (30) Saunders, M. G.; Voth, G. A. Ann. Rev. Biophy. 2013, 42, 73. doi: 10.1146/annurev-biophys-083012-130348

    31. [31]

      (31) Guigas, G.; Morozova, D.;Weiss, M. Adv. Protein Chem. Struct. Biol. 2011, 85 143. doi: 10.1016/B978-0-12-386485-7.00004-1

    32. [32]

      (32) Chen, M. L.;Wang, L. X.; Chen, S. S.; Liu, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 1201. [陈美玲, 汪理想, 陈姗姗, 刘晓亚. 物理化学学报, 2013, 29, 1201.] doi: 10.3866/PKU.WHXB201303202


  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

Metrics
  • PDF Downloads(393)
  • Abstract views(514)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return