Citation: XU Wen-Li, CHEN Qing-De, SHEN Xing-Hai. Synthesis of BaSO4 Nanofibers Controlled by the Yield of Hydrated Electrons in AOT-Based Microemulsions[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1194-1200. doi: 10.3866/PKU.WHXB201404291
-
Single-crystal BaSO4 nanofibers and multi-architecture bundles were successfully synthesized in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-based microemulsions containing K2S2O8 and BaCl2, in which the controlled release of SO42-ions was realized in situ by the radiolytic reduction of S2O82-ions. The molar ratio of water to surfactant (ω values), the counterions of Ba2+, and the addition of aromatic compounds into the oil phase of the microemulsions were used to adjust the yield of hydrated electrons (eaq-). This allowed for controlling the reduction of S2O82- ions and the release of SO42- ions, leading to the shape manipulation of BaSO4 nanoparticle. With an increase in ω values or dose rate, the yield of eaq- increased, which led to a quicker release of SO42- ions, and this did not favor the formation of BaSO4 nanofibers. When BaCl2 was replaced with Ba(NO3)2 the formation of nanofilaments became possible at a higher dose rate and a higher ω value, because NO3-effectively decreased the yield of eaq- and the rate of S2O82- ion reduction. When toluene was added into the oil phase of the microemulsions, the excess electrons were effectively scavenged in the oil phase, and the concentration of eaq- in the water pool decreased. This favored the formation of nanofibers at higher dose rates. These results showed that the mechanism about morphology control by the yield of eaq- was verified in the syntheses of BaSO4 nanoparticle.
-
Keywords:
-
BaSO4
, - γ-Irradiation,
- Hydrated electron,
- Reverse microemulsion,
- Nanofiber
-
-
-
[1]
(1) Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. doi: 10.1021/cr030063a
-
[2]
(2) Eastoe, J.; Hollamby, M. J.; Hudson, L. Adv. Colloid Interface Sci. 2006, 128 -130, 5. doi:10.1016/j.cis.2006.11.009
-
[3]
(3) Destrée, C.; B.Nagy, J. Adv. Colloid Interface Sci. 2006, 123 -126, 353. doi:10.1016/j.cis.2006.05.022
-
[4]
(4) Cao, Y. L.; Ding, X. L.; Li, H. C.; Yi, Z. G.;Wang, X. F.; Zhu, J. J.; Kan, C. X. Acta Phys. -Chim. Sin. 2011, 27, 1273. [曹艳丽, 丁孝龙, 李红臣, 伊兆广, 王祥夫, 朱杰君, 阚彩侠. 物理化学学报, 2011, 27, 1273.] doi: 10.3866/PKU.WHXB20110604
-
[5]
(5) He, P.; Shen, X. H.; Gao, H. C. Acta Phys. -Chim. Sin. 2004, 20, 1200. [何平, 沈兴海, 高宏成. 物理化学学报, 2004, 20, 1200.] doi: 10.3866/PKU.WHXB20041007
-
[6]
(6) Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhao, Z. G. J. Phys. Chem. B 1997, 101, 3460. doi: 10.1021/jp970419k
-
[7]
(7) Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhao, Z. G. Colloid Surf. APhysicochem. Eng. Asp. 1996, 108, 117. doi: 10.1016/0927-7757(95)03317-3
-
[8]
(8) Hopwood, J. D.; Mann, S. Chem. Mater. 1997, 9, 1819. doi: 10.1021/cm970113q
-
[9]
(9) Bagwe, R. P.; Khilar, K. C. Langmuir 1997, 13, 6432. doi: 10.1021/la9700681
-
[10]
(10) Modes, S.; Lianos, P. J. Phys. Chem. 1989, 93, 5854. doi: 10.1021/j100352a040
-
[11]
(11) Han, Y.; Zhu, L.; Shen, M.; Li, H. H. Acta Phys. -Chim. Sin. 2013, 29, 131. [韩莹, 朱露, 沈明, 李恒恒. 物理化学学报, 2013, 29, 131.] doi: 10.3866/PKU.WHXB201210082
-
[12]
(12) Zhu,W. Q.; Xu, L.; Ma, J.; Ren, J. M.; Chen, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 1284. [朱文庆, 许磊, 马瑾, 任建梅, 陈亚芍. 物理化学学报, 2010, 26, 1284.] doi: 10.3866/PKU.WHXB20100333
-
[13]
(13) Belloni, J. Catal. Today 2006, 113, 141. doi: 10.1016/j.cattod.2005.11.082
-
[14]
(14) Abedini, A.; Daud, A. R.; Hamid, M. A. A.; Othman, N. K.; Saion, E. Nanoscale Res. Lett. 2013, 8, 1. doi: 10.1186/1556-276X-8-1
-
[15]
(15) Chen, Q. D.; Shen, X. H.; Gao, H. C. Adv. Colloid Interface Sci. 2010, 159, 32. doi: 10.1016/j.cis.2010.05.002
-
[16]
(16) Wong, M.; Grätzel, M.; Thomas, J. K. Chem. Phys. Lett. 1975, 30, 329. doi: 10.1016/0009-2614(75)80134-5
-
[17]
(17) Adhikari, S.; Joshi, R.; pinathan, C. Int. J. Chem. Kinet. 1998, 30, 699. doi: 10.1002/(SICI)1097-4601(1998)
-
[18]
(18) Gebicki, J. L.; Gebicka, L.; Kroh, J. J. Chem. Soc.-Faraday Trans. 1994, 90, 3411. doi: 10.1039/ft9949003411
-
[19]
(19) Pileni, M. P.; Hickel, B.; Ferradini, C.; Pucheault, J. Chem. Phys. Lett. 1982, 92, 308. doi: 10.1016/0009-2614(82)80282-0
-
[20]
(20) Chen, Q. D.; Shen, X. H.; Gao, H. C. J. Colloid Interface Sci. 2007, 308, 491. doi: 10.1016/j.jcis.2006.12.021
-
[21]
(21) He, P.; Shen, X. H.; Gao, H. C. J. Colloid Interface Sci. 2005, 284, 510. doi: 10.1016/j.jcis.2004.10.060
-
[22]
(22) Chen, Q. D.; Shen, X. H.; Gao, H. C. J. Colloid Interface Sci. 2007, 312, 272. doi: 10.1016/j.jcis.2007.03.036
-
[23]
(23) Romero-Ibarra, I. C.; Rodriguez-Gattorno, G.; Garcia-Sanchez, M. F.; Sanchez-Solis, A.; Manero, O. Langmuir 2010, 26, 6954. doi: 10.1021/la904197k
-
[24]
(24) Niemann, B.; Veit, P.; Sundmacher, K. Langmuir 2008, 24, 4320. doi: 10.1021/la703566v
-
[25]
(25) Nagaraja, B. M.; Abimanyu, H.; Jung, K. D.; Yoo, K. S. J. Colloid Interface Sci. 2007, 316, 645. doi: 10.1016/j.jcis.2007.09.004
-
[26]
(26) Jones, F.; Richmond,W. R.; Rohl, A. L. J. Phys. Chem. B 2006, 110, 7414. doi: 10.1021/jp054916+
-
[27]
(27) Coveney, P. V.; Davey, R.; Griffin, J. L.; He, Y.; Hamlin, J. D.; Stackhouse, S.; Whiting, A. J. Am. Chem. Soc. 2000, 122, 11557. doi: 10.1021/ja990885i
-
[28]
(28) Lutter, S.; Koetz, J.; Tiersch, B.; Kosmella, S. J. Disper. Sci. Technol. 2009, 30, 745. doi: 10.1080/01932690802643113
-
[29]
(29) Iida, S.; Shoji, T.; Obatake, N.; Sato, H.; Ohgaki, K. J. Chem. Eng. Jpn. 2005, 38, 357. doi: 10.1252/jcej.38.357
-
[30]
(30) Li, M.; Mann, S. Langmuir 2000, 16, 7088. doi: 10.1021/la0000668
-
[31]
(31) Chen, Q. D.; Bao, H. Y.; Shen, X. H. Radiat. Phys. Chem. 2008, 77, 974. doi: 10.1016/j.radphyschem.2008.02.001
-
[32]
(32) Chen, Q. D.; Shen, X. H. Cryst. Growth Des. 2010, 10, 3838. doi: 10.1021/cg100307r
-
[33]
(33) Buxton, G. V.; Greenstock, C. L.; Helman,W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513. doi: 10.1063/1.555805
-
[34]
(34) Zhou, J.; Zhao, H. K.; Shi, J. F.; Chen, Q. D.; Shen, X. H. Radiat. Phys. Chem. 2014, 97, 366. doi: 10.1016/j.radphyschem.2013.07.027
-
[35]
(35) Tupikov, V. I. Organic Radiation Chemistry Handbook; Milinchuk, V. K., Tupikov, V. I. Eds.; Ellis Horwood Ltd.: Chichester, 1989; p 46.
-
[1]
-
-
[1]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[2]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[3]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[4]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[5]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[7]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[8]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[9]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[10]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[11]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[12]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[15]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[16]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[17]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[18]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[19]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[20]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[1]
Metrics
- PDF Downloads(317)
- Abstract views(784)
- HTML views(59)