Citation: YANG Zheng-Zheng, YANG Yi, ZHAO Ming, NG Mao-Chu, CHEN Yao-Qiang. Enhanced Sulfur Resistance of Pt-Pd/CeO2-ZrO2-Al2O3 Commercial Diesel Oxidation Catalyst by SiO2 Surface Cladding[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1187-1193. doi: 10.3866/PKU.WHXB201404281 shu

Enhanced Sulfur Resistance of Pt-Pd/CeO2-ZrO2-Al2O3 Commercial Diesel Oxidation Catalyst by SiO2 Surface Cladding

  • Received Date: 17 March 2014
    Available Online: 28 April 2014

    Fund Project:

  • In this work, porous SiO2 was added to the Pt-Pd/CeO2-ZrO2-Al2O3 (Pt-Pd/CZA) commercial diesel oxidation catalyst (DOC) to improve its sulfur resistibility. The SiO2/Pt-Pd/CeO2-ZrO2-Al2O3 (SiO2/Pt-Pd/CZA) catalyst was prepared by surface coating porous SiO2 onto the Pt-Pd/CZAmonolithic commercial DOC using a multilayer coating method. The as-prepared catalysts were characterized by scanning electron microscopy (SEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption-desorption, energy-dispersive X-ray (EDX) spectroscopy, and thermogravimetric analysis (TGA). SEM images show that the SiO2 layer is porous and uniformly covers the surface of the catalyst. Nitrogen adsorption-desorption isotherm results imply that the texture properties of the as-added SiO2 are similar to those of the Pt-Pd/CZA catalyst, and hence the specific surface area and pore structure of the Pt-Pd/CZA catalyst do not obviously change upon cladding with SiO2. The H2-TPR results imply that the reduction property of the Pt-Pd/CZA catalyst is not obviously affected by surface cladding with SiO2. EDX spectroscopy and TGA results demonstrate that the formation and accumulation of sulfur-contained species on the Pt-Pd/CZA catalyst are suppressed by the SiO2 surface coating. Finally, the as-prepared SiO2/Pt-Pd/CZA catalyst efficiently retained its high catalytic performance and improved the sulfur resistance of the Pt-Pd/CZA commercial DOC.

  • 加载中
    1. [1]

      (1) Grubert, G.; Neubauer, T.; Punke, A. H.; Mueller-Stach, T.W.; Siani, A.; Roth, S. A.; Hoke, J. B.; Sung, S.; Li, Y.;Wei, X.; Deeba, M. Diesel Oxidation Catalyst Composite with Layer Structure for Carbon Monoxide and Hydrocarbon Conversion. US Pat. 20100180581, 2010.

    2. [2]

      (2) Bailey, O. H.; Hedgecock, M. Architectural Diesel Oxidation Catalyst for Enhanced NO2 Generator. US Pat. 20110099975, 2011.

    3. [3]

      (3) Grubert, G.; Neubauer, T.; Punke, A. H.; Mueller-Stach, T.W.; Siani, A.; Roth, S. A.; Hoke, J. B.; Sung, S.; Li, Y.;Wei, X.; Deeba, M. Diesel Oxidation Catalyst Composite with Layer Structure for Carbon Monoxide and Hydrocarbon Conversion. US Pat. 8211392, 2012.

    4. [4]

      (4) Zhong, F. L.; Zhong, Y. J.; Xiao, Y. H.; Cai, G. C.; Zheng, Y.; Wei, K. M. Chin. J. Catal. 2011, 32, 1469. [钟富兰, 钟喻娇, 肖益鸿, 蔡国辉, 郑勇, 魏可镁. 催化学报, 2011, 32, 1469.]

    5. [5]

      (5) Zhou, J. F.; Zhao, M.; Peng, N.; Yang, Z. Z.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2012, 28, 1448. [周菊发, 赵明, 彭娜, 杨铮铮, 龚茂初, 陈耀强. 物理化学学报, 2012, 28, 1448.] doi: 10.3866/PKU.WHXB201204011

    6. [6]

      (6) Zhu, Y.;Wang, J. L.; Chen, Y. D.; Liao, C.W.;Wang, S. D.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 925. [朱艺, 王健礼, 陈永东, 廖传文, 王世丹, 龚茂初, 陈耀强. 物理化学学报, 2011, 27, 925.] doi: 10.3866/PKU.WHXB20110343

    7. [7]

      (7) Wei, Y. C.; Liu, J.; Zhao, Z.; Duan, A. J.; Jiang, G. Y. J. Catal. 2012, 287, 13. doi: 10.1016/j.jcat.2011.11.006

    8. [8]

      (8) Wei, Y. C.; Zhao, Z.; Yu, X. H.; Jin, B. F.; Liu, J.; Xu, C. M.; Duan, A. J.; Jiang, G. Y.; Ma, S. H. Catal. Sci. Technol. 2013, 3, 2958. doi: 10.1039/c3cy00248a

    9. [9]

      (9) Wei, Y. C.; Liu, J.; Zhao, Z.; Xu, C. M.; Duan, A. J.; Jiang, G. Y. Appl. Catal. A: Gen. 2013, 453, 250. doi: 10.1016/j.apcata.2012.12.013

    10. [10]

      (10) Chen, S.; Yao, Y.; Lan, L.; Cao, Y.; Yan, C.; ng, M.; Chen, Y. Chin. J. Catal. 2012, 33, 1762. [陈山虎, 姚艳玲, 兰丽, 曹毅, 闫朝阳, 龚茂初, 陈耀强. 催化学报, 2012, 33, 1762.]

    11. [11]

      (11) Liu, J.; Zhao, M.; Xu, C.; Liu, S.; Zhang, X.; Chen, Y. Chin. J. Catal. 2013, 34, 751. [刘建英, 赵明, 徐成华, 刘盛余, 张雪乔, 陈耀强. 催化学报, 2013, 34, 751.]

    12. [12]

      (12) Xiao, Y. H.; Yang, H. G.; Cai, G. H.; Zheng, Y.; Zheng, Y.;Wei, K. M. Acta Phys. -Chim. Sin. 2012, 28, 245. [肖益鸿, 杨黄根, 蔡国辉, 郑勇, 郑瑛, 魏可镁. 物理化学学报, 2012, 28,245.] doi: 10.3866/PKU.WHXB201228245

    13. [13]

      (13) Fang, R. M.; He, S. N.; Cui, Y. J.; Shi, Z. H.; ng, M. C.; Chen, Y. Q. Chin. J. Catal. 2012, 33, 1014. [方瑞梅, 何胜楠, 崔亚娟, 史忠华, 龚茂初, 陈耀强. 催化学报, 2012, 33, 1014.]

    14. [14]

      (14) Zhan, Z.; Liu, X.; He, H.; Song, L.; Li, J.; Ma, D. J. Rare Earths 2013, 31, 750. doi: 10.1016/S1002-0721(12)60353-6

    15. [15]

      (15) Liu, B. B.; Zhang, G. Z.; He, H.; Li, J. Z.; Zi, X. H.; Qiu,W. G.; Dai, H. X. Chem. J. Chin. Univ. 2013, 34, 1936. [刘北北, 张桂臻, 何洪, 李金洲, 訾学红, 邱文革, 戴洪兴. 高等学校化学学报, 2013, 34, 1936.]

    16. [16]

      (16) Deshmukh, S. S.; Zhang, M. H.; Kovalchuk, V. I.; d′Itri, J. L. Appl. Catal. B: Environ. 2003, 45, 135. doi: 10.1016/S0926-3373(03)00128-0

    17. [17]

      (17) Luo, T.; rte, R. J. Appl. Catal. B: Environ. 2004, 53, 77. doi: 10.1016/j.apcatb.2004.04.020

    18. [18]

      (18) Galisteo, F. C.; Mariscal, R.; Granados, M. L.; Poves, M. D. Z.; Fierro, J. L. G.; Kröger, V.; Keiski, R. L. Appl. Catal. B: Environ. 2007, 72, 272. doi: 10.1016/j.apcatb.2006.11.004

    19. [19]

      (19) Tan, P.; Hu, Z.; Lou, D. Fuel 2009, 88, 1086. doi: 10.1016/j.fuel.2008.11.031

    20. [20]

      (20) Zhang, K.; Hu, J.; Gao, S.; Liu, Y.; Huang, X.; Bao, X. Energy Policy 2010, 38, 2934. doi: 10.1016/j.enpol.2010.01.030

    21. [21]

      (21) Ueno, H.; Furutani, T.; Nagami, T.; Aono, N.; shima, H.; Kasahara, K. Development of Catalyst for Diesel Engine. SAE paper 980195, 1998.

    22. [22]

      (22) Verdier, S.; Harle, V.; Huang, A.; Rohart, E.; Larcher, O.; Allain, M. Doped Zirconia with High Thermal Stability, for High Sulfur Resistance Diesel Oxidation Catalysts. SAE paper 2006-01-0031, 2006.

    23. [23]

      (23) Paulson, T.; Moss, B.; Todd, B.; Eckstein, C.;Wise, B.; Singleton, D.; Zemskova, S.; Silver, R. New Developments in Diesel Oxidation Catalysts. SAE paper 2008-01-2638, 2008.

    24. [24]

      (24) Zhong, F.; Zhong, Y.; Xiao, Y.; Cai, G.;Wei, K. Catal. Lett. 2011, 141, 1828. doi: 10.1007/s10562-011-0711-2

    25. [25]

      (25) Yang, Z. Z.; Chen, Y. D.; Zhao, M.; Zhou, J. F.; ng, M. C.; Chen, Y. Q. Chin. J. Catal. 2012, 33, 819. [杨铮铮, 陈永东, 赵明, 周菊发, 龚茂初, 陈耀强. 催化学报, 2012, 33, 819.]

    26. [26]

      (26) Andersson, J.; Antonsson, M.; Eurenius, L.; Olsson, E.; Skoglundh, M. Appl. Catal. B: Environ. 2007, 72, 71. doi: 10.1016/j.apcatb.2006.10.011

    27. [27]

      (27) Koranne, M. M.; Pryor, J. N.; Chapman, D. M.; Brezny, R. Sulfur Tolerant Alumina Catalyst Support. US Pat. 8076263B2, 2011.

    28. [28]

      (28) Russell, A.; Epling,W. S. Catal. Rev.: Sci. Eng. 2011, 53, 337. doi: 10.1080/01614940.2011.596429

    29. [29]

      (29) Adams, K. M.; Cavataio, J. V.; Hammerle, R. H. Appl. Catal. B: Environ. 1996, 10, 157. doi: 10.1016/0926-3373(96)00029-X

    30. [30]

      (30) Kaapar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419. doi: 10.1016/S0920-5861(02)00384-X

    31. [31]

      (31) Park, S.; Pak, C. Catalyst and Fabrication Method of Same for Purifying Exhaust Gases of Automobile. US Pat. 5814577, 1998.

    32. [32]

      (32) Sun, K. P.; Lu,W.W.;Wang, M.; Xu, X. L. Appl. Catal. A: Gen. 2004, 268, 107. doi: 10.1016/j.apcata.2004.03.020

    33. [33]

      (33) Zhang, X. Q.;Wang, S. D.; Xin, X.; Liu, S. Y.; Chen, Y. Q.; Zhao, M. Chin. J. Inorg. Chem. 2012, 28, 1563. [张雪乔, 王世丹, 信欣, 刘盛余, 陈耀强, 赵明. 无机化学学报, 2012, 28, 1563.]

    34. [34]

      (34) Fornasiero, P.; Monte, R. D.; Rao, G. R.; Kaapar, J.; Merriani, S.; Trovarelli, A.; Graziani, M. J. Catal. 1995, 151, 168. doi: 10.1006/jcat.1995.1019

    35. [35]

      (35) Fornasiero, P.; Balducci, G.; Monte, R. D.; Kaapar, J.; Ser , V.; Gubitosa, G.; Ferrero, A.; Graziani, M. J. Catal. 1996, 164, 173. doi: 10.1006/jcat.1996.0373

    36. [36]

      (36) Leyrer, J.; Lox, E. S.; Ostgathe, K.; Strehlau,W.; Kreuzer, T.; Garr, G. Advanced Studies on Diesel after Treatment Catalysts for Passenger Cars. SAE Paper 960133, 1996.

    37. [37]

      (37) Kharas, K. C. C.; Bailey, O. H.; Vuichard, J. Improvements in Intimately Coupled Diesel Hydrocarbon Adsorber/Lean NOx Catalysis Leading to Durable Euro 3 Performance. SAE Paper 982603. 1998. doi: 10.7623/syxb201401001


  • 加载中
    1. [1]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    2. [2]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(549)
  • Abstract views(769)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return