Citation: XU Shu-Zhen, HAN Xue, TIAN Jun-Nan, WU Zhai, CHEN Zhong-Xiu. Mechanism behind the Inhibition of Sweetness Intensity of Aspartame by Guar Gum and Locust Bean Gum[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1134-1141. doi: 10.3866/PKU.WHXB201404251 shu

Mechanism behind the Inhibition of Sweetness Intensity of Aspartame by Guar Gum and Locust Bean Gum

  • Received Date: 17 March 2014
    Available Online: 25 April 2014

    Fund Project:

  • Current research on the effects of macromolecular hydrocolloids on sweetness is mainly focused on the properties of hydrocolloids and their texture-taste interactions. In this paper, the influence of two kinds of nonionic food hydrocolloids, Guar gum (GG) and Locust bean gum (LBG) on the taste of aspartame (APM) was studied. Sensory evaluation revealed high concentrations of GG and LBG significantly inhibited the sweetness intensity of APM, especially when their concentrations were higher than C* (coil overlap concentration). The mechanism of this phenomenon was investigated using an artificial taste receptor model and isothermal titration calorimetry. The association constant for APM, determined by the artificial taste receptor model, decreased in the presence of GG and LBG. More bound water was found in GG and LBG with an increase in the hydrocolloid concentration, especially at higher than C*. Additionally, water diffusion was hampered and this contributed to the lower sweetness intensity. We thus determined the influence of the hydrocolloid on the binding of sweeteners with the receptor, its water mobility as well as its diffusion behavior in the hydrocolloidal texture. The information obtained enables an understanding of the mechanism behind the effects of macromolecular hydrocolloids on taste.

  • 加载中
    1. [1]

      (1) Saha, D.; Bhattacharya, S. J. Food Sci. Technol. 2010, 47 (6), 587. doi: 10.1007/s13197-010-0162-6

    2. [2]

      (2) Mackey, A. O.; Valassi, K. Food Technol. 1956, 10, 238.

    3. [3]

      (3) Mackey, A. O. J. Food Sci. 1958, 23, 580.

    4. [4]

      (4) Christensen, C. M. Percep. Psychophys. 1980, 28 (4), 347. doi: 10.3758/BF03204394

    5. [5]

      (5) Baines, Z. V.; Morris, E. R. Food Hydrocolloids 1987, 1 (3), 197. doi: 10.1016/S0268-005X(87)80003-6

    6. [6]

      (6) Stone, H.; Oliver, S. J. Food Sci. 1966, 31, 129. doi: 10.1111/j.1365-2621.1966.tb15425.x

    7. [7]

      (7) Pangborn, R. M.; Trabue, I. M.; Szczesniak, A. S. J. Texture Studies 1973, 4 (2), 224. doi: 10.1111/j.1745-4603.1973.tb00666.x

    8. [8]

      (8) Barisas, L.; Roseit, T. R.; Gao, Y.; Schmidt, S. J.; Klein, B. P. J. Food Sci. 1995, 60, 523. doi: 10.1111/j.1365-2621.1995.tb09818.x

    9. [9]

      (9) Paulus, K.; Haas, E. M. Chem. Senses 1980, 5 (1), 23. doi: 10.1093/chemse/5.1.23

    10. [10]

      (10) Abson, R.; Gaddipati, S. R.; Hort, J.; Mitchell, J. R.;Wolf, B.; Hill, S. H. Food Hydrocolloids 2014, 35, 85.

    11. [11]

      (11) Gittings, M. R.; Cipelletti, L.; Trappe, V.;Weitz, D. Z.; In, M.; Lal, J. J. Phys. Chem. A 2001, 105, 9310. doi: 10.1021/jp0121825

    12. [12]

      (12) Mosca, A. C.; van de Velde, F.; Bult, J. H. F.; van Boekel, M. A. J. S. LWT -Food Sci. Technol. 2012, 46, 183. doi: 10.1016/j.lwt.2011.10.009

    13. [13]

      (13) Boland, A. B.; Delahunty, C. M.; van Ruth, S. M. Food Chem. 2006, 96, 452. doi: 10.1016/j.foodchem.2005.02.027

    14. [14]

      (14) Matsuo, R. Crit. Rev. Oral. Biol. Med. 2000, 11 (2), 216.

    15. [15]

      (15) Burseg, K. M. M.; Camacho, S.; Bult, J. H. F. J. Agric. Food. Chem. 2011, 59 (10), 5548. doi: 10.1021/jf2002848

    16. [16]

      (16) Shankar, P.; Ahuja, S.; Sriram, K. Nutrition 2013, 29, 1293. doi: 10.1016/j.nut.2013.03.024

    17. [17]

      (17) Nie, Y.; Hobbs, J. R.; Vigues, S.; Olson,W. J.; Conn, G. L.; Munger, S. D. Chem. Senses 2006, 31, 505. doi: 10.1093/chemse/bjj053

    18. [18]

      (18) DuBois, G. E. J. Flavour Frag. 2011, 26, 239. doi: 10.1002/ffj.2042

    19. [19]

      (19) Chen, Z. X.; Guo, G. M.; Deng, S. P. J. Agric. Food Chem. 2009, 57, 2945. doi: 10.1021/jf803302g

    20. [20]

      (20) Chen, Z. X.;Wu,W.; Zhang,W. B.; Deng, S. P. Food Chem. 2011, 128, 134. doi: 10.1016/j.foodchem.2011.03.008

    21. [21]

      (21) Dong,W. R.; Chen, G.; Chen, Z. X.; Deng, S. P. Food Chem. 2013, 141, 3110. doi: 10.1016/j.foodchem.2013.05.160

    22. [22]

      (22) Chiang, L. Y.; Swirczewski, J.W.; Hsu, C. S.; Chowdhury, S. K.; Cameron, S.; Creegan, K. J. Chem. Soc., Chem. Commun. 1992, 1791.

    23. [23]

      (23) Sun, J.; Yu, J. S.; Jin, S.; Zha, X.;Wu, Y. Q.; Yu, Z.W. J. Phys. Chem. B 2010, 114, 9854. doi: 10.1021/jp1009719

    24. [24]

      (24) Guest, S.; Essick, G.; Patel, A.; Prajapati, R.; McGlone, F. Food Qual. Prefer. 2007, 18, 342. doi: 10.1016/j.foodqual.2006.03.012

    25. [25]

      (25) Cook, D. J.; Hollowood, T. A.; Linforth, R. S. T.; Taylor, A. J. Food Qual. Prefer. 2002, 13, 473. doi: 10.1016/S0950-3293(02)00066-6

    26. [26]

      (26) Andrade, C. T.; Azero, E. G.; Luciano, L.; ncalve, M. P. Int. J. Biol. Macromol. 1999, 26, 181. doi: 10.1016/S0141-8130(99)00075-6

    27. [27]

      (27) Mälkki, Y.; Heiniö, R. L.; Autio, K. Food Hydrocolloids 1993, 6 (6), 525. doi: 10.1016/S0268-005X(09)80076-3

    28. [28]

      (28) Bayarri, S.; Izquierdo, L.; Costell, E. Food Hydrocolloids 2007, 21 (8), 1265. doi: 10.1016/j.foodhyd.2006.09.010

    29. [29]

      (29) Shallenberger, R. S.; Acree, T. E. Nature 1967, 216, 480. doi: 10.1038/216480a0

    30. [30]

      (30) Jiang, L. X.; Yan, Y.; Huang, J. B.; Yu, C. F.; Jin, C.W.; Deng, M. L.;Wang, Y. L. J. Phys. Chem. B 2010, 114, 2165. doi: 10.1021/jp911092y

    31. [31]

      (31) Ghai, R.; Falconer, R. J.; Collins, B. M. J. Mol. Recog. 2012, 25 (1), 32. doi: 10.1002/jmr.1167

    32. [32]

      (32) Samavati, V.; Razavi, S. H.; Mousavi, S. M. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2008, 27 (2), 23.

    33. [33]

      (33) Chen, Z. X.; Deng, S. P.; Li, X. K. J. Colloid Interface Sci. 2008, 318 (2), 389. doi: 10.1016/j.jcis.2007.09.084

    34. [34]

      (34) Kokini, J. K.; Bistany, K.; Poole, M.; Stier, E. U. J. Texture Studies 1982, 13 (2), 187. doi: 10.1111/j.1745-4603.1982.tb01394.x


  • 加载中
    1. [1]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    7. [7]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    11. [11]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    12. [12]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    19. [19]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(439)
  • Abstract views(836)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return