Citation: ZHAO Wei-Rong, SHI Qiao-Meng, LIU Ying. Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1318-1324. doi: 10.3866/PKU.WHXB201404222
-
SnO2/TiO2 nanotube composite photocatalysts were synthesized by microwave-assisted hydrothermal and micro-emulsion methods. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM/EDX), and electrochemical techniques. Toluene was chosen as a model pollutant to evaluate the performance, deactivation, and regeneration behavior of the photocatalysts under ultraviolet (UV) and vacuum ultraviolet (VUV) irradiation. The results show that ternary heterojunctions of SnO2/TiO2 nanotube composite photocatalysts including anatase TiO2 (A-TiO2)/rutile TiO2 (R-TiO2), A-TiO2/SnO2, and R-TiO2/SnO2 were successfully created. They were able to separate photogenerated electron-hole pairs efficiently, and promote photocatalytic activity accordingly. SnO2/TiO2 showed the best photocatalytic performance. Under UV or VUV irradiation, the toluene degradation rate of SnO2/TiO2 was 100%, and the CO2 formation rate (k2) of SnO2/TiO2 was approximately 3 times higher than that of P25. Because of the low mineralization rate under UV irradiation, the refractory intermediates generated can occupy active photocatalytic sites on the photocatalyst surface, which hinders the photocatalytic oxidation rate. After 20 h of UV irradiation, the k2 of SnO2/TiO2 decreased from 138.5 to 76.1 mg·m-3·h-1, implying that the photocatalysts can be deactivated quickly. VUV irradiation was employed to regenerate the deactivated SnO2/SnO2/TiO2 nanotube composite photocatalysts were synthesized by microwave-assisted hydrothermal and micro-emulsion methods. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM/EDX), and electrochemical techniques. Toluene was chosen as a model pollutant to evaluate the performance, deactivation, and regeneration behavior of the photocatalysts under ultraviolet (UV) and vacuum ultraviolet (VUV) irradiation. The results show that ternary heterojunctions of SnO2/TiO2 nanotube composite photocatalysts including anatase TiO2 (A-TiO2)/rutile TiO2 (R-TiO2), A-TiO2/SnO2, and R-TiO2/SnO2 were successfully created. They were able to separate photogenerated electron-hole pairs efficiently, and promote photocatalytic activity accordingly. SnO2/TiO2 showed the best photocatalytic performance. Under UV or VUV irradiation, the toluene degradation rate of SnO2/TiO2 was 100%, and the CO2 formation rate (k2) of SnO2/TiO2 was approximately 3 times higher than that of P25. Because of the low mineralization rate under UV irradiation, the refractory intermediates generated can occupy active photocatalytic sites on the photocatalyst surface, which hinders the photocatalytic oxidation rate. After 20 h of UV irradiation, the k2 of SnO2/TiO2 decreased from 138.5 to 76.1 mg·m-3·h-1, implying that the photocatalysts can be deactivated quickly. VUV irradiation was employed to regenerate the deactivated SnO2/TiO2 because reactive species such as ·OH, O2-·, O(1D), O(3P), and O3 can be generated. These play an important role in the oxidation of refractory intermediates on the photocatalyst surface, and k2 increased to 143.6 mg·m-3·h-1 accordingly. Therefore, UV photodegradation combined with VUV regeneration could be a feasible photocatalytic process because of a synergistic effect between UV and VUV.
-
-
[1]
(1) Wang, C. H.; Shao, C. L.; Zhang, X. T.; Liu, Y. C. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983
-
[2]
(2) Chang, S. Y.; Chen, S. F.; Huang, Y. C. J. Phys. Chem. C 2011, 115, 1600. doi: 10.1021/jp109103a
-
[3]
(3) Zhou, X. F.; Cao, J. L.; Xu, M. F.;Wang, Z. S.; Lu, J. Mater. Res. Bull. 2013, 48, 4942. doi: 10.1016/j.materresbull. 2013.07.031
-
[4]
(4) Wu, L.; Xing, J.; Hou, Y.; Xiao, F. Y.; Li, Z.; Yang, H. G. Chem. Eur. J. 2013, 19, 8688. doi: 10.1002/chem.201390096
-
[5]
(5) Smith,W.;Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. P. J. Mater. Chem. 2011, 21, 10792. doi: 10.1039/c1jm11629k
-
[6]
(6) Su, C. Y.; Shao, C. L.; Liu, Y. C. J. Colloid Interface Sci. 2010, 346, 324. doi: 10.1016/j.jcis.2010.02.027
-
[7]
(7) Wu, Z. Y.; Zhao, G. H.; Zhang, Y. N.; Tian, H. Y.; Li, D. M. J. Phys. Chem. C 2012, 116, 12829. doi: 10.1021/jp300374s
-
[8]
(8) Chaguetmi, S.; Mammeri, F.; Nowak, S.; Decorse, P.; Lecoq, H.; Gaceur, M.; Naceur, J. B.; Achour, S.; Chtourou, R.; Ammar, S. RSC Adv. 2013, 3, 2572. doi: 10.1039/c2ra21684a
-
[9]
(9) Jovi, F.; Tomaši, V.; Davidson, A.; Nogier, J. P.; Li,W.; Kosar, V. Chem. Biochem. Eng. Q. 2013, 27, 37.
-
[10]
(10) Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Lamson, J. J.; Zhao, R. Y. Atmos. Environ. 2009, 43, 2229. doi: 10.1016/j.atmosenv.2009.01.034
-
[11]
(11) Jeong, J. Y.; Sekiguchi, K.; Sakamoto, K. Chemosphere 2004, 57, 663. doi: 10.1016/j.chemosphere.2004.05.037
-
[12]
(12) Huang, H. B.; Leung, D. Y. C.; Li, G. S.; Leung, M. K. H.; Fu, X. L. Catal. Today 2011, 175, 310. doi: 10.1016/j.cattod.2011.04.015
-
[13]
(13) Zhao,W. R.; Yang, Y. N.; Dai, J. S.; Liu, F. F.;Wang, Y. Chemosphere 2013, 91, 1002. doi: 10.1016/j.chemosphere.2013.01.086
-
[14]
(14) Chen, S. H.; Xu, Y.; Lu, B. L.;Wu, D. Acta Phys. -Chim. Sin. 2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.]
-
[15]
(15) Ou, H. H.; Lo, S. L.; Liao, C. H. J. Phys. Chem. C 2011, 115, 4000. doi: 10.1021/jp1076005
-
[16]
(16) Zhang, H.; Li, G. R.; An, L. P.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y. J. Phys. Chem. C 2007, 111, 6143. doi:10.1021/jp0702595
-
[17]
(17) Zhao,W. R.;Wang, Y.; Yang, Y. N.; Tang, J.; Yang, Y. Appl. Catal. B: Environ. 2012, 115, 90.
-
[18]
(18) Dong, L. F.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. F. Carbon 2010, 48, 781. doi: 10.1016/j.carbon.2009.10.027
-
[19]
(19) Tang, Z. R.; Li, F.; Zhang, Y. H.; Fu, X. Z.; Xu, Y. J. J. Phys. Chem. C 2011, 115, 7880. doi: 10.1021/jp1115838
-
[20]
(20) Debono, O.; Thevenet, F.; Gravejat, P.; Hequet, V.; Raillard, C.; Lecoq, L. Appl. Catal. B: Environ. 2011, 106, 600. doi: 10.1016/j.apcatb.2011.06.021
-
[21]
(21) Jankulovska, M.; Berger, T.; Lana-Villarreal, T.; Gómez, R. Electrochim. Acta 2012, 62, 172. doi: 10.1016/j.electacta.2011.12.016
-
[22]
(22) Komaguchi, K.; Nakano, H.; Araki, A.; Harima, Y. Chem. Phys. Lett. 2006, 428, 338. doi: 10.1016/j.cplett.2006.07.003
-
[23]
(23) Xing, M. Y.; Zhang, J. L.; Chen, F.; Tian, B. Z. Chem. Commun. 2011, 47, 4947. doi: 10.1039/c1cc10537j
-
[24]
(24) Zhao, L.; Ran, J. R.; Shu, Z.; Dai, G. T.; Zhai, P. C.;Wang, S. M. Int. J. Photoenergy 2012, 2012, 1. doi: 10.1155/2012/472958
-
[25]
(25) Huang, H. B.; Li,W. B. Appl. Catal. B: Environ. 2011, 102, 449. doi: 10.1016/j.apcatb.2010.12.025
-
[26]
(26) Zhao,W. R.; Dai, J. S.; Liu, F. F.; Bao, J. Z.;Wang, Y.; Yang, Y.; Yang, Y. N.; Zhao, D. Y. Sci. Total Environ. 2012, 438, 201. doi: 10.1016/j.scitotenv.2012.08.081
-
[1]
-
-
[1]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[2]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[3]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[4]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[5]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[6]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[7]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[8]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[9]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[10]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[11]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[12]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[13]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[16]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[17]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[18]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[19]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[20]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[1]
Metrics
- PDF Downloads(743)
- Abstract views(588)
- HTML views(10)