Citation: HUANG Guo-Yong, XU Sheng-Ming, LI Lin-Yan, WANG Xue-Jun, LU Sha-Sha. Synthesis and Modification of a Lamellar Co3O4 Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1121-1126. doi: 10.3866/PKU.WHXB201404221
-
For advanced performance lithium-ion batteries (LIBs) various novel electrode materials with high energy density have been extensively investigated. Cobaltosic oxide (Co3O4), commonly used as an anode in LIBs, has attracted much interest because of its high theoretical specific capacity (890 mAh·g-1), high tap density, and stable chemical properties. However, its practical use has been hindered because of its low electronic conductivity and poor rate capability. To address these problems, we investigated a liquid phase precipitation method followed by thermal treatment and obtained a unique lamellar Co3O4 powder. Its X-ray diffraction (XRD) diffraction peaks match the standard pattern for cubic phase Co3O4 with od crystallinity. We found that the Co3O4 powder consists of many irregular sheets (1.5-3.0 μm in diameter, 100-300 nm in thickness) with numerous poles by scanning electronmicroscopy (SEM).Additionally, the surface area was about 30.5 m2·g-1, and this was calculated from BET nitrogen adsorption isotherm measurement data. Remarkably, perfect performance was obtained as evaluated by electrochemical measurements, including a high initial discharge capacity (1444.5 mAh·g-1 at 0.1C) and excellent capacity retention (charge capacity after 50 cycles was still greater than 1100.0 mAh·g-1 at 0.1C). However, its rate capability was still not adequate (75.3% of the first charge capacity after 50 cycles at 1C). To improve the rate capability, commercial carbon nanotubes (CNTs) mixed with the Co3O4 powder was used to enhance the electronic conductivity. The charge capacity retention ratios were 96.3% after 70 cycles at 1C and 97.0% after 50 cycles at 2C. Therefore, enhanced electrochemical performance with impressive rate capability was obtained, as expected.
-
Keywords:
-
Co3O4
, - Lamellar,
- Carbon nanotube,
- Lithium-ion battery,
- Anode
-
-
-
[1]
(1) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
-
[2]
(2) Chen, J. J. Materials 2013, 6, 156. doi: 10.3390/ma6010156
-
[3]
(3) Huang, G. Y.; Xu, S. M.;Wang, J. L.; Li, L. Y.;Wang, X. J. Acta Chim. Sin. 2013, 71, 1589. [黄国勇, 徐盛明, 王俊莲, 李林艳, 王学军. 化学学报, 2013, 71, 1589.] doi: 10.6023/A13060656
-
[4]
(4) Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, 535. doi: 0.1126/science.1222453
-
[5]
(5) Wang, F.; Lu, C. C.; Qin, Y. F.; Liang, C. C.; Zhao, M. S.; Yang, S. C.; Sun, Z. B.; Song, X. P. J. Power Sources 2013, 235, 67. doi: 10.1016/j.jpowsour.2013.01.190
-
[6]
(6) Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.;Wang, D. Angew . Chem. 2013, 125, 1. doi: 10.1002/ange.201209858
-
[7]
(7) Yan, N.; Hu, L.; Li, Y.;Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q.W. J. Phys. Chem. C 2012, 116, 7227. doi: 10.1021/jp2126009
-
[8]
(8) Hong, S. H.; Bae, J. S.; Ahn, H. J. Met. Mater. Int. 2008, 14, 229. doi: 10.3365/met.mat.2008.04.229
-
[9]
(9) Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem . Eur . J. 2009, 15, 6169. doi: 10.1002/chem.200802561
-
[10]
(10) Lu, Y.;Wang, Y.; Zou, Y. Q.; Jiao, Z.; Zhao, B.; He, Y. Q.;Wu, M. H. Electrochem. Commun. 2010, 12, 101. doi: 10.1016/j.elecom.2009.10.046
-
[11]
(11) Shim, H.W.; Jin, Y. H.; Seo, S. D.; Lee, S. H.; Kim, D.W. ACS Nano 2011, 5, 443. doi: 10.1021/nn1021605
-
[12]
(12) Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Huang, J. N.; Yan, W. J.; Liu, G. Mater. Lett. 2008, 62, 3410. doi: 10.1016/j.matlet.2008.03.033
-
[13]
(13) Chou, S. L.;Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Power Sources 2008, 182, 359. doi: 10.1016/j.jpowsour.2008.03.083
-
[14]
(14) Rui, X. H.; Tan, H. T.; Sim, D. H.; Liu,W. L.; Xu, C.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. J. Power Sources 2013, 222, 97. doi: 1016/j.jpowsour.2012.08.094
-
[15]
(15) Wang, J. T.;Wang, Y.; Huang, B.; Yang, J. Y.; Tan, A.; Lu, S. G. Acta Phys. -Chim. Sin. 2014, 30, 305. [王建涛, 王耀, 黄斌, 杨娟玉, 谭翱, 卢世刚. 物理化学学报, 2014, 30, 305.] doi: 10.3866/PKU.WHXB201312022
-
[16]
(16) Wang, X.; Guan, H.; Chen, S.; Li, H. Q.; Zhai, T. Y.; Tang, D. M.; Bando, Y.; lberg, D. Chem. Commun. 2011, 47, 12280. doi: 10.1039/c1cc15169j
-
[17]
(17) Wang, G. L.; Liu, J. C.; Tang, S.; Li, H. Y.; Cao, D. X. J. Solid State Electrochem. 2011, 15, 2587. doi: 10.1007/s10008-010-1254-y
-
[18]
(18) Park, J.; Moon,W. G.; Kim, G. P.; Nam, I.; Park, S.; Kim, Y.; Yi, J. Electrochim. Acta 2013, 105, 110. doi: 10.1016/j.electacta.2013.04.170
-
[19]
(19) Cao, F.;Wang, D. Q.; Deng, R. P.; Tang, J. K.; Song, S. Y.; Lei, Y. Q.;Wang, S.; Su, S. Q.; Yang, X. G.; Zhang, H. J. Cryst. Eng. Commun. 2011, 13, 2123. doi: 10.1039/c0ce00392a
-
[20]
(20) Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.;Wang, T. H. Chem . Eur . J. 2010, 16, 5215. doi: 10.1002/chem.200901632
-
[21]
(21) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29, 293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29, 293.] doi: 10.3866/PKU.WHXB201211142
-
[22]
(22) Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. ACS Nano 2010, 4, 1425. doi: 10.1021/nn9012675
-
[23]
(23) Wang, Y. F.; Zhang, L. J. J. Power Sources 2012, 209, 20. doi: 10.1016/j.jpowsour.2012.02.074
-
[24]
(24) Zhan, L.;Wang, Y. L.; Qiao,W. M.; Ling, L. C.; Yang, S. B. Electrochim. Acta 2012, 78, 440. doi: 10.1016/j.electacta.2012.06.017
-
[25]
(25) Liu, D. Q.; Yang, Z. B.;Wang, P.; Li, F.;Wang, D. S.; He, D. Y. Nanoscale 2013, 5, 1917. doi: 10.1039/c2nr33383j
-
[26]
(26) Keng, P. Y.; Kim, B. Y.; Shim, I. B.; Sahoo, R.; Veneman, P. E.; Armstrong, N. R.; Yoo, H.; Pemberton, J. E.; Bull, M. M.; Griebel, J. J.; Ratcliff, E. L.; Nebesny, K. G.; Pyun, J. ACS Nano 2009, 3, 3143. doi: 10.1021/nn900483w
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[6]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[7]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[8]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[9]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[12]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[13]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[14]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[15]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[16]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[17]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[20]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[1]
Metrics
- PDF Downloads(581)
- Abstract views(703)
- HTML views(26)