Citation: WANG Wen-Jun, ZHAO Hong-Bin, YUAN An-Bao, FANG Jian-Hui, XU Jia-Qiang. Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1113-1120. doi: 10.3866/PKU.WHXB201404182 shu

Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries

  • Received Date: 6 March 2014
    Available Online: 18 April 2014

    Fund Project:

  • We report the synthesis of a novel multiwalled carbon nanotube-Na3V2(PO4)3 (MWCNT-NVP) composite with excellent electrochemical performance. The composite material was prepared by a hydrothermal process combined with a sol-gel method. The MWCNT-NVP composite consists of Na3V2(PO4)3 (NVP) and a small amount of multiwalled carbon nanotubes (MWCNTs) (8.74%(w)). The MWCNTs were successfully dispersed between the NVP nanoparticles, which was confirmed by field-emission scanning electron microscopy, and served as a kind of "electronic wire". Electrochemical measurements show that the MWCNTNVP composite has enhanced capacity and cycling performance compared with pristine Na3V2(PO4)3. At a current rate of 0.2C (35.2 mA·g-1), the initial reversible discharge capacity of the MWCNT-NVP was 82.2 mAh·g-1, and 72.3 mAh·g-1 was maintained after 100 cycles when cycled between 3.0 and 4.5 V. od cycling performance was also observed when cycling between 1.0 and 3.0 V. The initial reversible capacity was 100.6 mAh·g-1 and the capacity retention was 90% after 100 cycles. Additionally, electrochemical AC impedance showed that the electronic conductivity of MWCNT-NVP was significantly improved in the presence of the MWCNTs. These results indicate that the MWCNT-NVP composite has outstanding properties, and is thus a promising alternative for lithium-ion batteries with relatively low lithium consumption.

  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644

    2. [2]

      (2) odenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z

    3. [3]

      (3) Tarascon, J. M. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680

    4. [4]

      (4) Ellis, B. L.; Makahnouk,W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007

    5. [5]

      (5) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a

    6. [6]

      (6) Zu, C. X.; Li, H. Energy & Environmental Science 2011, 4, 2614. doi: 10.1039/c0ee00777c

    7. [7]

      (7) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.W.; Lu, X. C.; Choi, D.W.; Lemmon, J. P.; Liu, J. Chemical Reviews 2011, 111, 3577. doi: 10.1021/cr100290v

    8. [8]

      (8) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741

    9. [9]

      (9) Cao, Y. L.; Xiao, L. F.;Wang,W.; Choi, D.W.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Advanced Materials 2011, 23, 3155. doi: 10.1002/adma.201100904

    10. [10]

      (10) Yamada, Y.; Doi, T.; Tanaka, I.; Okada, S.; Yamaki, J. Journal of Power Sources 2011, 196, 4837. doi: 10.1016/j.jpowsour.2011.01.060

    11. [11]

      (11) Lee, K. T.; Ramesh, T. N.; Nan, F.; Botton, G.; Nazar, L. F. Chemistry of Materials 2011, 23, 3593. doi: 10.1021/cm200450y

    12. [12]

      (12) Sauvage, F.; Quarez, E.; Tarascon, J. M.; Baudrin, E. Solid State Sciences 2006, 8, 1215. doi: 10.1016/j.solidstatesciences.2006.05.009

    13. [13]

      (13) Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Electrochemistry Communications 2011, 13, 1225. doi: 10.1016/j.elecom.2011.08.038

    14. [14]

      (14) Komaba, S.; Nakayama, T.; Ogata, A.; Shimizu, T.; Takei, C.; Takada, S.; Hokura, A.; Nakai, I. ECS Transactions 2009, 16, 43.

    15. [15]

      (15) Hamani, D.; Ati, M.; Tarascon, J. M.; Rozier, P. Electrochemistry Communications 2011, 13, 938. doi: 10.1016/j.elecom.2011.06.005

    16. [16]

      (16) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chemistry of Materials 2011, 23, 4109. doi: 10.1021/cm202076g

    17. [17]

      (17) Park, S. I.; cheva, I.; Okada, S.; Yamaki, J. I. Journal of the Electrochemical Society 2011, 158, A1067.

    18. [18]

      (18) Berthelot, R.; Carlier, D.; Delmas, C. Nature Materials 2011, 10, 74. doi: 10.1038/nmat2920

    19. [19]

      (19) Yang, S. Y.;Wang, X. Y.;Wei, J. L.; Li, X. Q.; Tang, A. P. Acta Phys. -Chim. Sin. 2008, 24 (9), 1669. [杨顺毅, 王先友, 魏建良, 李秀琴, 唐安平. 物理化学学报, 2008, 24 (9), 1669.] doi:10.1016/S1872-1508(08)60068-6

    20. [20]

      (20) Zhong, Y. J.; Li, J. T.;Wu, Z. G.; Zhong, B. H.; Guo, X. D.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2013, 29 (9), 1989. [钟艳君, 李君涛, 吴振国, 钟本和, 郭孝东, 黄令, 孙世刚. 物理化学学报, 2013, 29 (9), 1989.] doi: 10.3866/PKU.WHXB201306181

    21. [21]

      (21) Zhang, C. X.; He, J. P.; Zhao, G.W.; Zhao, J. Q. Chinese Journal of Inorganic Chemistry 2007, 23 (4), 649. [张传香, 何建平, 赵桂网, 赵建庆. 无机化学学报, 2007, 23 (4), 649.]

    22. [22]

      (22) Masquelier, C.; Patoux, S.;Wurm, C.; Morcrette, M. Lithium Batteries: Science and Technology; Nazri, G. A., Pistoia, G. Eds.; Kluwer Academic: Boston, 2004; pp 445-477.

    23. [23]

      (23) Plashnitsa, L. S.; Kobayashi, E.; Noguchi, Y.; Okada, S.; Yamaki, J. I. Journal of the Electrochemical Society 2010, 157, A536.

    24. [24]

      (24) Du, K.; Guo, H.W.; Hu, G. R.; Peng, Z. D.; Cao, Y. B. Journal of Power Sources 2013, 223, 284. doi: 10.1016/j. jpowsour.2012.09.069

    25. [25]

      (25) Wei, S.;Wang, C.; Liu, H. M.; Yang,W. S. Chemistry-A European Journal 2013, 19, 14712. doi: 10.1002/chem.201300005

    26. [26]

      (26) Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen,W.; Chen, L. Q. Electrochemistry Communications 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009

    27. [27]

      (27) Kang, J.; Baek, S.; Mathew, V.; Gim, J.; Song, J.; Park, H.; Chae, E.; Rai, A.; Kim, J. Journal of Materials Chemistry 2012, 22, 20857. doi: 10.1039/c2jm34451c

    28. [28]

      (28) Jung, Y. H.; Lim, C. H.; Kim, D. K. Journal of Materials Chemistry 2013, A1, 11350.

    29. [29]

      (29) Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. Journal of Power Sources 2014, 247, 975. doi: 10.1016/j.jpowsour.2013.09.051

    30. [30]

      (30) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0

    31. [31]

      (31) Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Nature 1992, 360, 444. doi: 10.1038/360444a0

    32. [32]

      (32) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966. doi: 10.1126/science.269.5226.966

    33. [33]

      (33) ldberger, J.; Fan, R.; Yang, P. D. Accounts Chem. Res. 2006, 39, 239. doi: 10.1021/ar040274h

    34. [34]

      (34) Tang, M. X.; Yuan, A. B.; Zhao, H. B.; Xu, J. Q. Journal of Power Sources 2013, 235, 5. doi: 10.1016/j.jpowsour.2013.01.182

    35. [35]

      (35) Chen, L.; Shen, L. F.; Nie, P.; Su, X. F.; Zhang, X. G.; Li, H. S. Acta Chimica Sinica 2012, 70 (1), 15. [陈琳, 申来法, 聂平, 苏晓飞, 张校刚, 李洪森. 化学学报, 2012, 70 (1), 15.] doi: 10.6023/A1105275

    36. [36]

      (36) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (2), 373. [朱剑波, 徐友龙, 王杰, 王景平. 物理化学学报, 2012, 28 (2), 373.] doi: 10.3866/PKU.WHXB201112021

    37. [37]

      (37) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29 (3), 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29 (3), 546.] doi: 10.3866/PKU.WHXB201301091

    38. [38]

      (38) Gao,W.; Bao, L. Y.; Su, Y. F.; Tian, J.; Liu,W.; Chen, S.;Wu, F. Chemical Journal of Chinese Universities 2013, 34 (7), 1709. [高伟, 包丽颖, 苏岳锋, 田君, 刘伟, 陈实, 吴锋. 高等学校化学学报, 2013, 34 (7), 1709.] doi: 10.7503/cjcu20121057

    39. [39]

      (39) Park, M. S.; Needham, S. A.;Wang, G. X.; Kang, Y. M.; Park, J. S.; Dou, S. X.; Liu, H. K. Chem. Mater. 2007, 19, 2406. doi: 10.1021/cm0701761

    40. [40]

      (40) Moriguchi, I.; Shono, Y.; Yamada, H.; Kudo, T. J. Phys. Chem. B 2008, 112, 14560. doi: 10.1021/jp802649t

    41. [41]

      (41) Wen, Z. H.;Wang, Q.; Zhang, Q.; Li, J. H. Adv. Funct. Mater. 2007, 17, 2772. doi: 10.1002/adfm.200600739

    42. [42]

      (42) Reddy, A. L. M.; Shaijumon, M. M.; wda, S. R.; Ajayan, P. M. Nano Lett. 2009, 9, 1002. doi: 10.1021/nl803081j

    43. [43]

      (43) Nanjundaswamy, K. S.; Padhi, A. K.; odenough, J. B.; Okada, S.; Ohtsuka, H.; Arai, H.; Yamaki, J. Solid State Ionics 1996, 92, 1.

    44. [44]

      (44) Jian, Z. L. Novel Electrode Materials for Stationary Batteries. Ph.D. Dissertation,Wuhan University of Technology,Wuhan, 2012. [简泽浪. 新型储能电池电极材料研究[D]. 武汉: 武汉理工大学, 2012.]

    45. [45]

      (45) Cushing, B. L.; odenough, J. B. Journal of Solid State Chemistry 2001, 162 (2), 176. doi: 10.1006/jssc.2001.9213

    46. [46]

      (46) Delmas, C.; Nadiri, A.; Soubeyroux, J. L. Solid State Ionics 1988, 28, 419.

    47. [47]

      (47) Mazza, D. Journal of Solid State Chemistry 2001, 156 (1), 154. doi: 10.1006/jssc.2000.8975

    48. [48]

      (48) Gao, P.; Nuli, Y.; He, Y. S.;Wang, J. Z.; Minett, A. I.; Yang, J.; Chen, J. Chemical Communications 2010, 46 (48), 9149. doi: 10.1039/c0cc02870c

    49. [49]

      (49) Lee, S. Y.; Park, J. H.; Park, P.; Kim, J. H.; Ahn, S.; Lee, K. J.; Lee, H. D.; Park, J. S.; Kim, D. H.; Jeong, Y. U. Journal of Solid State Electrochemistry 2010, 14 (6), 951. doi: 10.1007/s10008-009-0888-0


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    14. [14]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(807)
  • Abstract views(779)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return