Citation: WANG Wen-Jun, ZHAO Hong-Bin, YUAN An-Bao, FANG Jian-Hui, XU Jia-Qiang. Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1113-1120. doi: 10.3866/PKU.WHXB201404182 shu

Hydrothermal Sol-Gel Method for the Synthesis of a Multiwalled Carbon Nanotube-Na3V2(PO4)3 Composite as a Novel Electrode Material for Lithium-Ion Batteries

  • Received Date: 6 March 2014
    Available Online: 18 April 2014

    Fund Project:

  • We report the synthesis of a novel multiwalled carbon nanotube-Na3V2(PO4)3 (MWCNT-NVP) composite with excellent electrochemical performance. The composite material was prepared by a hydrothermal process combined with a sol-gel method. The MWCNT-NVP composite consists of Na3V2(PO4)3 (NVP) and a small amount of multiwalled carbon nanotubes (MWCNTs) (8.74%(w)). The MWCNTs were successfully dispersed between the NVP nanoparticles, which was confirmed by field-emission scanning electron microscopy, and served as a kind of "electronic wire". Electrochemical measurements show that the MWCNTNVP composite has enhanced capacity and cycling performance compared with pristine Na3V2(PO4)3. At a current rate of 0.2C (35.2 mA·g-1), the initial reversible discharge capacity of the MWCNT-NVP was 82.2 mAh·g-1, and 72.3 mAh·g-1 was maintained after 100 cycles when cycled between 3.0 and 4.5 V. od cycling performance was also observed when cycling between 1.0 and 3.0 V. The initial reversible capacity was 100.6 mAh·g-1 and the capacity retention was 90% after 100 cycles. Additionally, electrochemical AC impedance showed that the electronic conductivity of MWCNT-NVP was significantly improved in the presence of the MWCNTs. These results indicate that the MWCNT-NVP composite has outstanding properties, and is thus a promising alternative for lithium-ion batteries with relatively low lithium consumption.

  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644

    2. [2]

      (2) odenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z

    3. [3]

      (3) Tarascon, J. M. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680

    4. [4]

      (4) Ellis, B. L.; Makahnouk,W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007

    5. [5]

      (5) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a

    6. [6]

      (6) Zu, C. X.; Li, H. Energy & Environmental Science 2011, 4, 2614. doi: 10.1039/c0ee00777c

    7. [7]

      (7) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.W.; Lu, X. C.; Choi, D.W.; Lemmon, J. P.; Liu, J. Chemical Reviews 2011, 111, 3577. doi: 10.1021/cr100290v

    8. [8]

      (8) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741

    9. [9]

      (9) Cao, Y. L.; Xiao, L. F.;Wang,W.; Choi, D.W.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Advanced Materials 2011, 23, 3155. doi: 10.1002/adma.201100904

    10. [10]

      (10) Yamada, Y.; Doi, T.; Tanaka, I.; Okada, S.; Yamaki, J. Journal of Power Sources 2011, 196, 4837. doi: 10.1016/j.jpowsour.2011.01.060

    11. [11]

      (11) Lee, K. T.; Ramesh, T. N.; Nan, F.; Botton, G.; Nazar, L. F. Chemistry of Materials 2011, 23, 3593. doi: 10.1021/cm200450y

    12. [12]

      (12) Sauvage, F.; Quarez, E.; Tarascon, J. M.; Baudrin, E. Solid State Sciences 2006, 8, 1215. doi: 10.1016/j.solidstatesciences.2006.05.009

    13. [13]

      (13) Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Electrochemistry Communications 2011, 13, 1225. doi: 10.1016/j.elecom.2011.08.038

    14. [14]

      (14) Komaba, S.; Nakayama, T.; Ogata, A.; Shimizu, T.; Takei, C.; Takada, S.; Hokura, A.; Nakai, I. ECS Transactions 2009, 16, 43.

    15. [15]

      (15) Hamani, D.; Ati, M.; Tarascon, J. M.; Rozier, P. Electrochemistry Communications 2011, 13, 938. doi: 10.1016/j.elecom.2011.06.005

    16. [16]

      (16) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chemistry of Materials 2011, 23, 4109. doi: 10.1021/cm202076g

    17. [17]

      (17) Park, S. I.; cheva, I.; Okada, S.; Yamaki, J. I. Journal of the Electrochemical Society 2011, 158, A1067.

    18. [18]

      (18) Berthelot, R.; Carlier, D.; Delmas, C. Nature Materials 2011, 10, 74. doi: 10.1038/nmat2920

    19. [19]

      (19) Yang, S. Y.;Wang, X. Y.;Wei, J. L.; Li, X. Q.; Tang, A. P. Acta Phys. -Chim. Sin. 2008, 24 (9), 1669. [杨顺毅, 王先友, 魏建良, 李秀琴, 唐安平. 物理化学学报, 2008, 24 (9), 1669.] doi:10.1016/S1872-1508(08)60068-6

    20. [20]

      (20) Zhong, Y. J.; Li, J. T.;Wu, Z. G.; Zhong, B. H.; Guo, X. D.; Huang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2013, 29 (9), 1989. [钟艳君, 李君涛, 吴振国, 钟本和, 郭孝东, 黄令, 孙世刚. 物理化学学报, 2013, 29 (9), 1989.] doi: 10.3866/PKU.WHXB201306181

    21. [21]

      (21) Zhang, C. X.; He, J. P.; Zhao, G.W.; Zhao, J. Q. Chinese Journal of Inorganic Chemistry 2007, 23 (4), 649. [张传香, 何建平, 赵桂网, 赵建庆. 无机化学学报, 2007, 23 (4), 649.]

    22. [22]

      (22) Masquelier, C.; Patoux, S.;Wurm, C.; Morcrette, M. Lithium Batteries: Science and Technology; Nazri, G. A., Pistoia, G. Eds.; Kluwer Academic: Boston, 2004; pp 445-477.

    23. [23]

      (23) Plashnitsa, L. S.; Kobayashi, E.; Noguchi, Y.; Okada, S.; Yamaki, J. I. Journal of the Electrochemical Society 2010, 157, A536.

    24. [24]

      (24) Du, K.; Guo, H.W.; Hu, G. R.; Peng, Z. D.; Cao, Y. B. Journal of Power Sources 2013, 223, 284. doi: 10.1016/j. jpowsour.2012.09.069

    25. [25]

      (25) Wei, S.;Wang, C.; Liu, H. M.; Yang,W. S. Chemistry-A European Journal 2013, 19, 14712. doi: 10.1002/chem.201300005

    26. [26]

      (26) Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen,W.; Chen, L. Q. Electrochemistry Communications 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009

    27. [27]

      (27) Kang, J.; Baek, S.; Mathew, V.; Gim, J.; Song, J.; Park, H.; Chae, E.; Rai, A.; Kim, J. Journal of Materials Chemistry 2012, 22, 20857. doi: 10.1039/c2jm34451c

    28. [28]

      (28) Jung, Y. H.; Lim, C. H.; Kim, D. K. Journal of Materials Chemistry 2013, A1, 11350.

    29. [29]

      (29) Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. Journal of Power Sources 2014, 247, 975. doi: 10.1016/j.jpowsour.2013.09.051

    30. [30]

      (30) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0

    31. [31]

      (31) Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Nature 1992, 360, 444. doi: 10.1038/360444a0

    32. [32]

      (32) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966. doi: 10.1126/science.269.5226.966

    33. [33]

      (33) ldberger, J.; Fan, R.; Yang, P. D. Accounts Chem. Res. 2006, 39, 239. doi: 10.1021/ar040274h

    34. [34]

      (34) Tang, M. X.; Yuan, A. B.; Zhao, H. B.; Xu, J. Q. Journal of Power Sources 2013, 235, 5. doi: 10.1016/j.jpowsour.2013.01.182

    35. [35]

      (35) Chen, L.; Shen, L. F.; Nie, P.; Su, X. F.; Zhang, X. G.; Li, H. S. Acta Chimica Sinica 2012, 70 (1), 15. [陈琳, 申来法, 聂平, 苏晓飞, 张校刚, 李洪森. 化学学报, 2012, 70 (1), 15.] doi: 10.6023/A1105275

    36. [36]

      (36) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (2), 373. [朱剑波, 徐友龙, 王杰, 王景平. 物理化学学报, 2012, 28 (2), 373.] doi: 10.3866/PKU.WHXB201112021

    37. [37]

      (37) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29 (3), 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29 (3), 546.] doi: 10.3866/PKU.WHXB201301091

    38. [38]

      (38) Gao,W.; Bao, L. Y.; Su, Y. F.; Tian, J.; Liu,W.; Chen, S.;Wu, F. Chemical Journal of Chinese Universities 2013, 34 (7), 1709. [高伟, 包丽颖, 苏岳锋, 田君, 刘伟, 陈实, 吴锋. 高等学校化学学报, 2013, 34 (7), 1709.] doi: 10.7503/cjcu20121057

    39. [39]

      (39) Park, M. S.; Needham, S. A.;Wang, G. X.; Kang, Y. M.; Park, J. S.; Dou, S. X.; Liu, H. K. Chem. Mater. 2007, 19, 2406. doi: 10.1021/cm0701761

    40. [40]

      (40) Moriguchi, I.; Shono, Y.; Yamada, H.; Kudo, T. J. Phys. Chem. B 2008, 112, 14560. doi: 10.1021/jp802649t

    41. [41]

      (41) Wen, Z. H.;Wang, Q.; Zhang, Q.; Li, J. H. Adv. Funct. Mater. 2007, 17, 2772. doi: 10.1002/adfm.200600739

    42. [42]

      (42) Reddy, A. L. M.; Shaijumon, M. M.; wda, S. R.; Ajayan, P. M. Nano Lett. 2009, 9, 1002. doi: 10.1021/nl803081j

    43. [43]

      (43) Nanjundaswamy, K. S.; Padhi, A. K.; odenough, J. B.; Okada, S.; Ohtsuka, H.; Arai, H.; Yamaki, J. Solid State Ionics 1996, 92, 1.

    44. [44]

      (44) Jian, Z. L. Novel Electrode Materials for Stationary Batteries. Ph.D. Dissertation,Wuhan University of Technology,Wuhan, 2012. [简泽浪. 新型储能电池电极材料研究[D]. 武汉: 武汉理工大学, 2012.]

    45. [45]

      (45) Cushing, B. L.; odenough, J. B. Journal of Solid State Chemistry 2001, 162 (2), 176. doi: 10.1006/jssc.2001.9213

    46. [46]

      (46) Delmas, C.; Nadiri, A.; Soubeyroux, J. L. Solid State Ionics 1988, 28, 419.

    47. [47]

      (47) Mazza, D. Journal of Solid State Chemistry 2001, 156 (1), 154. doi: 10.1006/jssc.2000.8975

    48. [48]

      (48) Gao, P.; Nuli, Y.; He, Y. S.;Wang, J. Z.; Minett, A. I.; Yang, J.; Chen, J. Chemical Communications 2010, 46 (48), 9149. doi: 10.1039/c0cc02870c

    49. [49]

      (49) Lee, S. Y.; Park, J. H.; Park, P.; Kim, J. H.; Ahn, S.; Lee, K. J.; Lee, H. D.; Park, J. S.; Kim, D. H.; Jeong, Y. U. Journal of Solid State Electrochemistry 2010, 14 (6), 951. doi: 10.1007/s10008-009-0888-0


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    18. [18]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(807)
  • Abstract views(874)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return