Citation:
YU Zai-Lu, XIE Peng-Fei, TANG Xing-Fu, YUE Ying-Hong, HUA Wei-Ming, GAO Zi. Selective Catalytic Reduction of NO with NH3 over MnOx-CeO2-WO3-ZrO2:Effect of Calcination Temperature[J]. Acta Physico-Chimica Sinica,
;2014, 30(6): 1175-1179.
doi:
10.3866/PKU.WHXB201404171
-
MnOx-CeO2-WO3-ZrO2 catalysts were prepared by co-precipitation and calcined at various temperatures (500, 600, 700, and 800 ℃). The effect of calcination temperature on their performance in the selective catalytic reduction (SCR) of NO with ammonia in the presence of O2 and H2O was investigated. The structural and physicochemical characterization of the catalysts were performed by N2 adsorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), NH3 temperature-programmed desorption (NH3-TPD), and CO pulse reaction. The results show that the low temperature activity decreased with an increase in the calcination temperature, which is due to a decrease in the amount of surface chemisorbed oxygen and acid sites. As the calcination temperature increased the high temperature activity first increased and then decreased, which is contrary to the variation found for the most readily releasable oxygen on the catalyst surface. The catalyst calcined at 700 ℃ exhibited od low temperature activity and had the widest reaction temperature window. The light-off temperature (50% NO conversion) was 189 ℃ for this catalyst and the NO conversion was 80%-100% between 218 and 431 ℃ at a space velocity of 90000 h-1.
-
-
-
[1]
(1) Liu, Z. M.;Woo, S. I. Catal. Rev. Sci. Eng. 2006, 48, 43. doi: 10.1080/01614940500439891
-
[2]
(2) Baidya, T.; Bernhard, A.; Elsener, M.; Kröcher, O. Top. Catal. 2013, 56, 23. doi: 10.1007/s11244-013-9923-6
-
[3]
(3) Zheng, H. H.; Keith, J. M. Catal. Today 2004, 98, 403. doi: 10.1016/j.cattod.2004.08.008
-
[4]
(4) Chapman, D. M. Appl. Catal. A-Gen. 2011, 392, 143.
-
[5]
(5) Kapteijn, F.; Sin redjo, L.; Andreini, A.; Moulijn, J. A. Appl. Catal. B-Environ. 1994, 3, 173. doi: 10.1016/0926-3373(93)E0034-9
-
[6]
(6) Li, J. H.; Chen, J. J.; Ke, R.; Luo, C. K.; Hao, J. M. Catal. Commun. 2007, 8, 1896. doi: 10.1016/j.catcom.2007.03.007
-
[7]
(7) Lin, T.; Zhang, Q. L.; Li,W.; ng, M. C.; Xing, Y. X.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2008, 24, 1127. [林涛, 张秋林, 李伟, 龚茂初, 幸怡汛, 陈耀强. 物理化学学报, 2008, 24, 1127.] doi: 10.1016/S1872-1508(08)60046-7
-
[8]
(8) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201204175
-
[9]
(9) Gu, T. T.; Jin, R. B.; Liu, Y.; Liu, H. F.;Weng, X. L.;Wu, Z. B. Appl. Catal. B-Environ. 2013, 129, 30.
-
[10]
(10) Qi, G. S.; Yang, R. T. Chem. Commun. 2003, 848.
-
[11]
(11) Chen, X. R.; Chen, C. L.; Xu, N. P.; Mou, C. Y. Catal. Today 2004, 93-95, 129.
-
[12]
(12) Lukinskas, P.; Kuba, S.; Grasselli, R. K.; Knözinger, H. Top. Catal. 2007, 46, 87. doi: 10.1007/s11244-007-0318-4
-
[13]
(13) Si, Z. C.;Weng, D.;Wu, X. D.; Li, J.; Li, G. J. Catal. 2010, 271, 43. doi: 10.1016/j.jcat.2010.01.025
-
[14]
(14) Due-Hansen, J.; Kustov, A. L.; Rasmussen, S. B.; Fehrmann, R.; Christensen, C. H. Appl. Catal. B-Environ. 2006, 66, 161. doi: 10.1016/j.apcatb.2006.03.006
-
[15]
(15) Xu, H. D.; Zhang, Q. L.; Qiu, C. T.; Lin, T.; ng, M. C.; Chen, Y. Q. Chem. Eng. Sci. 2012, 76, 120. doi: 10.1016/j.ces.2012.04.012
-
[16]
(16) Santiesteban, J. G.; Vartuli, J. C.; Han, S.; Bastian, R. D.; Chang, C. D. J. Catal. 1997, 168, 431. doi: 10.1006/jcat.1997.1658
-
[17]
(17) Si, Z. C.;Weng, D.;Wu, X. D.; Ma, Z. R.; Ma, J.; Ran, R. Catal. Today 2013, 201, 122. doi: 10.1016/j.cattod.2012.05.001
-
[18]
(18) Zhang, X.; Ji, L. Y.; Zhang, S. C.; Yang,W. S. J. Power Sources 2007, 173, 1017. doi: 10.1016/j.jpowsour.2007.08.083
-
[19]
(19) Wu, Z. B.; Jin, R. B.; Liu, Y.;Wang, H. Q. Catal. Commun. 2008, 9, 2217. doi: 10.1016/j.catcom.2008.05.001
-
[20]
(20) Chen, L. S.; Yang, R. T.; Chen, N. J. Catal. 1996, 164, 70. doi: 10.1006/jcat.1996.0364
-
[21]
(21) Ding, Z. Y.; Li, L. X.;Wade, D.; Gloyna, E. F. Ind. Eng. Chem. Res. 1998, 37, 1707. doi: 10.1021/ie9709345
-
[22]
(22) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A-Gen. 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
-
[23]
(23) Chang, H. Z.; Li, J. H.; Yuan, J.; Chen, L.; Dai, Y.; Arandiyuan, H.; Xu, J. Y.; Hao, J. M. Catal. Today 2013, 201, 139. doi: 10.1016/j.cattod.2012.03.027
-
[24]
(24) Guan, B.; Lin, H.; Zhu, L.; Huang, Z. J. Phys. Chem. C 2011, 115, 12850. doi: 10.1021/jp112283g
-
[25]
(25) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. BEnviron. 1998, 18, 1. doi: 10.1016/S0926-3373(98)00040-X
-
[26]
(26) Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C. D. Appl. Catal. B-Environ. 2007, 73, 60. doi: 10.1016/j.apcatb.2006.06.003
-
[27]
(27) Choi, E. Y.; Nam, I. S.; Kim, Y. G. J. Catal. 1996, 161, 597. doi: 10.1006/jcat.1996.0222
-
[28]
(28) Lietti, L.; Nova, I.; Ramis, G.; Dall′Acqua, L.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani, F. J. Catal. 1999, 187, 419. doi: 10.1006/jcat.1999.2603
-
[1]
-
-
-
[1]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[2]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[3]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[4]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[5]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[6]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[7]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[8]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[9]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[10]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[11]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[12]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[13]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[14]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[17]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[18]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[19]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(528)
- Abstract views(618)
- HTML views(8)