Citation:
SUN Xiao-Ling, JIN Qin, WANG Yan-Ni, CAI Yue-Piao, WANG Chao-Jie. Interaction and Properties of Proline-Zn2+/1+/0 Complexes[J]. Acta Physico-Chimica Sinica,
;2014, 30(6): 1071-1085.
doi:
10.3866/PKU.WHXB201404151
-
The hybrid density functional theory (DFT) methods M062X and X3LYP with the TZVP and 6-311++G(2d, p)+LANL2DZ basis sets were used to calculate the complexes formed between fifteen proline (Pro) conformers and Zn2+/1+/0. The geometrical structures, energetics, vibrational frequencies, and electronic structures were investigated in detail. We obtained 19, 21, and 24 stable complexes for Pro-Zn2+/1+/0 at the four levels. The most stable Pro-Zn2+ structure was a four-membered ring with Zn2+ bound to both oxygen ends (OO) of the zwitterionic proline, and the next stable compound was a five-membered ring with Zn2+ coordinated to both the amino nitrogen and carbonyl oxygen (NO) of proline, but Zn+ showed opposite behavior. The relative energy difference and the deformation energy of coordinated Pro decreased gradually with a reduction in the charge number of Zn. The binding energy of the Pro-Zn2+/1+/0 systems are in the -620 to -936, -139 to -325, and -1.5 to -22 kJ·mol-1 ranges, respectively. The properties of the Pro-Zn2+ system were significantly different when using different methods and basis sets. Both cationic systems indicated some charge transfer from Pro to Zn. The energy difference values for the frontier orbitals of all the complexes are lower than those of the corresponding fragments.
-
-
-
[1]
(1) Huang, L. P.; Tepaamorndech, S. Mol. Aspects Med. 2013, 34, 548. doi: 10.1016/j.mam.2012.05.008
-
[2]
(2) Scheers, N. Nutrients 2013, 5, 957. doi: 10.3390/nu5030957
-
[3]
(3) Garriga-Canut, M.; Agustin-Pavón, C.; Herrmann, F.; Sánchez, A.; Dierssen, M.; Fillat, C.; Isalan, M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E3136.
-
[4]
(4) Lakatos, A.; Gyurcsik, B.; Nagy, N. V.; Csendes, Z.; Wéber, E.; Fülöp, L.; Kiss, T. Dalton Trans. 2012, 41, 1713. doi: 10.1039/c1dt10989h
-
[5]
(5) Shan, S. S.; Yan, C.; Xu, L. Acta Phys. -Chim. Sin. 2013, 29, 2630. [单升升, 闫超,徐亮.物理化学学报, 2013, 29, 2630.] doi: 10.3866/PKU.WHXB201310302
-
[6]
(6) Zhu, G. P.; Teng, M. K.; Wang, Y. Z. Prog. Biotechnol. 2000, 20, 48. [朱国萍,滕脉坤, 王玉珍. 生物工程进展, 2000, 20, 48.]
-
[7]
(7) Cárcamo, J. J.; Aliaga, A. E.; Clavijo, E.; Garrido, C.; Gómez-Jeria, J. S.; Campos-Vallette, M. M. J. Raman Spectrosc. 2012, 43, 750. doi: 10.1002/jrs.3092
-
[8]
(8) Daně?ek, P.; Kapitán, J.; Baumruk, V.; Bednárová, L.; Kopeck , V., Jr.; Bou?, P. J. Chem. Phys. 2007, 126, 224513. doi: 10.1063/1.2738065
-
[9]
(9) Isaac, M.; Latour, J. M.; Sénèque, O. Chem. Sci. 2012, 3, 3409. doi: 10.1039/c2sc21029k
-
[10]
(10) Siddiqui, Z. N.; Farooq, F. Catal. Sci. Technol. 2011, 1, 810. doi: 10.1039/c1cy00110h
-
[11]
(11) Kofoed, J.; Machuqueiro, M.; Reymond, J. L.; Darbre, T. Chem. Commun. 2004, 1540.
-
[12]
(12) Khalafi-Nezhad, A.; Sarikhani, S.; Shahidzadeh, E. S.; Panahi, F. Green Chem. 2012, 14, 2876. doi: 10.1039/c2gc35765h
-
[13]
(13) Yang, H.; Wong, M. W. Org. Biomol. Chem. 2012, 10, 3229. doi: 10.1039/c2ob06993h
-
[14]
(14) Venkatesan, G.; Anandha Babu, G.; Ramasamy, P.; Chandramohan, A. J. Mol. Struct. 2013, 1033, 121. doi: 10.1016/j.molstruc.2012.08.019
-
[15]
(15) Kale, S. S.; Kotmale, A. S.; Dutta, A. K.; Pal, S.; Rajamohanan, P. R.; Sanjayan, G. J. Org. Biomol. Chem. 2012, 10, 8426. doi: 10.1039/c2ob26132d
-
[16]
(16) Hernández, R.; Rodríguez, R.; Martínez, J. D.; Araujo, M. L.; Brito, F.; Lubes, G.; Rodríguez, M.; Hernández, L.; Lubes, V. J. Sol. Chem. 2012, 41, 1103. doi: 10.1007/s10953-012-9867-7
-
[17]
(17) Garden, J. A.; Kennedy, A. R.; Mulvey, R. E.; Robertson, S. D. Dalton Trans. 2011, 40, 11945. doi: 10.1039/c1dt11430a
-
[18]
(18) Qian, X.; Sun, P. P.; Ding, J. G.; Li, B. L.; Li, H. Y. J. Mol. Struct. 2013, 1031, 175. doi: 10.1016/j.molstruc.2012.07.016
-
[19]
(19) Allen, W. D.; Czinki, E.; Császár, A. G. Chem. Eur. J. 2004, 10, 4512. doi: 10.1002/chem.200400112
-
[20]
(20) Li, X. J.; Zhong, Z. J.; Wu, H. Z. J. Mol. Model. 2011, 17, 2623. doi: 10.1007/s00894-011-0957-z
-
[21]
(21) Rogalewicz, F.; Ohanessian, G.; Gresh, N. J. Comput. Chem. 2000, 21, 963. doi: 10.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-3
-
[22]
(22) Ai, H. Q.; Bu, Y. X.; Han, K. L. J. Chem. Phys. 2003, 118, 10973. doi: 10.1063/1.1575192
-
[23]
(23) Ai, H. Q.; Yang, A. B.; Li, Y. G. Acta Phys. -Chim. Sin. 2008, 24, 1047. [艾洪奇, 杨爱彬,李允刚. 物理化学学报, 2008, 24, 1047.] doi: 10.3866/PKU.WHXB20080623
-
[24]
(24) Remko, M.; Fitz, D.; Rode, B. M. J. Phys. Chem. A 2008, 112, 7652. doi: 10.1021/jp801418h
-
[25]
(25) Rulšíek, L.; Havlas, Z. J. Am. Chem. Soc. 2000, 122, 10428. doi: 10.1021/ja001265g
-
[26]
(26) Tjörnhammar, R.; Edholm, O. J. Chem. Phys. 2010, 132, 205101. doi: 10.1063/1.3428381
-
[27]
(27) Liu, W. M.; Liu, J. T.; Leng, H. X.; Zhu, Z. G. J. Mol. Sci. 2001, 17, 247. [刘伟明, 刘巨涛,冷红霞,朱志国.分子科学学报, 2001, 17, 247.]
-
[28]
(28) Marino, T.; Russo, N.; Toscano, M. J. Phys. Chem. B 2003, 107, 2588. doi: 10.1021/jp027063j
-
[29]
(29) Martínez-Magadán, J. M.; Ramírez-Solís, A.; Novaro, O. Chem. Phys. Lett. 1991, 186, 107. doi: 10.1016/0009-2614(91)80199-8
-
[30]
(30) Ahmadi, M. S.; Fattahi, A. Sci. Iran. 2011, 18, 1343. doi: 10.1016/j.scient.2011.09.015
-
[31]
(31) Wang, C. J.; Cai, Y. P.; Huang, X. H.; Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰,蔡跃飘, 黄旭慧,卫涛.物理化学学报, 2011, 27, 352.] doi: 10.3866/PKU.WHXB20110232
-
[32]
(32) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin. 2007, 23, 305. [王朝杰,李永,杨新宇,林丽.物理化学学报, 2007, 23, 305.] doi: 10.1016/S1872-1508(07)60024-2
-
[33]
(33) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993
-
[34]
(34) Hargis, J. C.; Schaefer, H. F.; Houk, K. N.;Wheeler, S. E. J. Phys. Chem. A 2010, 114, 2038. doi: 10.1021/jp911376p
-
[35]
(35) Liu, Y.; Zhao, J. J.; Li, F. Y.; Chen, Z. F. J. Comput. Chem. 2013, 34, 121. doi: 10.1002/jcc.23112
-
[36]
(36) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
-
[37]
(37) David, R. L. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press Inc.: NewYork, 2003; p 10-178.
-
[38]
(38) Jakubikova, E.; Rappe, A. K.; Bernstein, E. R. J. Phys. Chem. A 2006, 110, 9529.
-
[39]
(39) Sun, T.; Wang, Y. B. Acta Phys. -Chim. Sin. 2011, 27, 2553. [孙涛, 王一波. 物理化学学报, 2011, 27, 2553.] doi: 10.3866/PKU.WHXB20111017
-
[40]
(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.
-
[41]
(41) Vázquez, M. V.; Martínez, A. J. Phys. Chem. A 2007, 111, 9931.
-
[1]
-
-
-
[1]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[2]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[3]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[4]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[5]
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
-
[6]
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
-
[7]
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
-
[8]
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
-
[9]
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
-
[10]
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
-
[11]
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
-
[12]
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
-
[13]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[14]
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
-
[15]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[16]
Jing LIANG , Qian WANG , Junfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
-
[19]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[20]
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
-
[1]
Metrics
- PDF Downloads(545)
- Abstract views(682)
- HTML views(25)