Citation: BAI Shou-Li, LU Wen-Hu, LI Dian-Qing, LI Xiao-Ning, FANG Yan-Yan, LIN Yuan. Synthesis of Mesoporous TiO2 Microspheres and Their Use as Scattering Layers in Quantum Dot Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1107-1112. doi: 10.3866/PKU.WHXB201404111
-
Mesoporous TiO2 microspheres (MSs) were successfully synthesized by the direct hydrolysis of TiCl4 in ethanol aqueous solution using cetyltrimethyl ammonium bromide (CTAB) as a template. X-ray diffraction (XRD) revealed a rutile structure for TiO2 in all the products. Scanning electron microscopy (SEM) revealed that the TiO2 microspheres had an average diameter of 700 nm, and they were composed of packed nanoparticles that had a mean size of about 16 nm. Films with or without TiO2 microspheres, as a scattering layer on top of the TiO2 nanocrystalline layer, were prepared by the doctor-blade method. CdS/ CdSe quantum dots (QDs) were grown on films by chemical bath deposition (CBD) to form QD sensitized solar cells (QDSCs). Ultraviolet-visible and diffuse reflectance spectra showed that these micro-spherical structures were favorable for the deposition of QDs and a relatively higher light scattering effect was observed. This effectively enhanced light harvesting and led to an increase in the photocurrent of the QDSCs. As a result, a power conversion efficiency of 4.5% was obtained, which is 27.7% higher than that of QDSCs without scattering layers and 10.2% higher than that of QDSCs with traditional scattering layers composed of 20 and 400 nm TiO2 solid particles. We attribute this improvement to their higher light scattering effect and longer electron lifetimes.
-
-
[1]
(1) Yu,W.W.; Qu, L. H.; Gao,W. Z.; Peng, X. G. Chem. Mater. 2010, 26, 560.
-
[2]
(2) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s
-
[3]
(3) Nozik, A. J. Inorg. Chem. 2005, 44, 6893. doi: 10.1021/ic0508425
-
[4]
(4) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J. B.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845
-
[5]
(5) Hanna, M. C.; Nozik, A. J. J. Appl. Phys. 2006, 100, 074510. doi: 10.1063/1.2356795
-
[6]
(6) Shockley,W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034
-
[7]
(7) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[8]
(8) Zhang, Q. X.; Guo, X. Z.; Huang, X. M.; Li, D. M.; Luo, Y. H.; Shen, Q.; Toyoda, T.; Meng, Q. B. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k
-
[9]
(9) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26, 2927.] doi: 10.3866/PKU.WHXB20101113
-
[10]
(10) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007. doi: 10.1021/ja0782706
-
[11]
(11) Guijarro, N.; Lana-Villarreal, T.; Lutz, T.; Haque, S. A.; Gómez, R. J. Phys. Chem. Lett. 2012, 3, 3367.
-
[12]
(12) Jovanovski, V.; nzález-Pedro, V.; Gimenez, S.; Azaceta, E.; Cabanero, G.; Grande, H.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J. J. Am. Chem. Soc. 2011, 133, 20156. doi: 10.1021/ja2096865
-
[13]
(13) Shengyuan, Y.; Nair, A. S.; Peining, Z.; Ramakrishna, S. Mater. Lett. 2012, 76,43. doi: 10.1016/j.matlet.2012.02.055
-
[14]
(14) Shi, J. F.; Fan, Y.; Xu, X. Q.; Xu, G.; Chen, L. H. Acta Phys. -Chim. Sin. 2012, 28, 857. [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华. 物理化学学报, 2012, 28, 857.] doi: 10.3866/PKU.WHXB201202204
-
[15]
(15) Paul, G. S.; Kim, J. H.; Kim, M. S.; Do, K.; Ko, J.; Yu, J. S. ACS Appl. Mater. Interfaces 2012, 4, 375. doi: 10.1021/am201452s
-
[16]
(16) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Chem. Soc. 1997, 80, 3157.
-
[17]
(17) Chou, T. P.; Zhang, Q. F.; Fryxell, G. E.; Cao, G. Z. Adv. Mater. 2007, 19, 2588. doi: 10.1002/adma.200602927
-
[18]
(18) Xu, X. Q.; Jiang, G. H.;Wan, Q. C.; Shi, J. F.; Xu, G.; Miao, L. Mater. Chem. Phys. 2012, 136, 1060. doi: 10.1016/j.matchemphys.2012.08.051
-
[19]
(19) Park, Y. C.; Chang, Y. J.; Kum, B. G.; Kong, E. H.; Son, J. Y.; Kown, Y. S.; Park, T.; Jang, H. M. J. Mater. Chem. 2011, 21, 9582. doi: 10.1039/c1jm11043h
-
[20]
(20) Duan, Y. D.; Fu, N. Q.; Fang, Y. Y.; Li, X. N.; Liu, Q. P.; Zhou, X.W.; Lin, Y. Electrochim. Acta 2013, 113, 109. doi: 10.1016/j.electacta.2013.09.057
-
[21]
(21) Duan, Y. D.; Fu, N. Q.; Liu, Q. P.; Fang, Y. Y.; Zhou, X.W.; Zhang, J. B.; Lin, Y. J. Phys. Chem. C 2012, 116, 8888. doi: 10.1021/jp212517k
-
[22]
(22) Zhang, Q. X.; Chen, G. P.; Yang, Y. Y.; Shen, X.; Zhang, Y. D.; Li, C. H.; Yu, R. C.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Phys. Chem. Chem. Phys. 2012, 14, 6479. doi: 10.1039/c2cp40568g
-
[23]
(23) Tachan, Z.; Shalom, M.; Hod, I.; Rühle, S.; Tirosh, S.; Zaban, A. J. Phys. Chem. C 2011, 115, 6162. doi: 10.1021/jp112010m
-
[24]
(24) Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison- Wesley Publishing Company: New York, 1978; pp 281-285.
-
[25]
(25) Zhang, X. T.; Zhou, G.W.; Xu, J.; Bai, G.W.;Wang, L. J. Solid State Chem. 2010, 183, 1394. doi: 10.1016/j.jssc.2010.04.016
-
[26]
(26) Feng, L.; Jia, J. G.; Fang, Y. Y.; Zhou, X.W.; Lin, Y. Electrochim. Acta 2013, 87, 629. doi: 10.1016/j.electacta.2012.09.037
-
[27]
(27) Fabregat-Santia , F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D. B.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2007, 111, 6550. doi: 10.1021/jp066178a
-
[28]
(28) Bisquert, J.; Fabregat-Santia , F.; Mora-Seró, I.; Garcia-Belmonte, G.; Gimenez, D. J. Phys. Chem. C 2009, 113, 17278. doi: 10.1021/jp9037649
-
[1]
-
-
[1]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[4]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[5]
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
-
[6]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[7]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[8]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[9]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[10]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[11]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[12]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[13]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[14]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[15]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[16]
Hongyan Feng , Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087
-
[17]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[18]
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
-
[19]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[20]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[1]
Metrics
- PDF Downloads(588)
- Abstract views(561)
- HTML views(2)