Citation: BAI Shou-Li, LU Wen-Hu, LI Dian-Qing, LI Xiao-Ning, FANG Yan-Yan, LIN Yuan. Synthesis of Mesoporous TiO2 Microspheres and Their Use as Scattering Layers in Quantum Dot Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1107-1112. doi: 10.3866/PKU.WHXB201404111 shu

Synthesis of Mesoporous TiO2 Microspheres and Their Use as Scattering Layers in Quantum Dot Sensitized Solar Cells

  • Received Date: 27 February 2014
    Available Online: 5 May 2014

    Fund Project:

  • Mesoporous TiO2 microspheres (MSs) were successfully synthesized by the direct hydrolysis of TiCl4 in ethanol aqueous solution using cetyltrimethyl ammonium bromide (CTAB) as a template. X-ray diffraction (XRD) revealed a rutile structure for TiO2 in all the products. Scanning electron microscopy (SEM) revealed that the TiO2 microspheres had an average diameter of 700 nm, and they were composed of packed nanoparticles that had a mean size of about 16 nm. Films with or without TiO2 microspheres, as a scattering layer on top of the TiO2 nanocrystalline layer, were prepared by the doctor-blade method. CdS/ CdSe quantum dots (QDs) were grown on films by chemical bath deposition (CBD) to form QD sensitized solar cells (QDSCs). Ultraviolet-visible and diffuse reflectance spectra showed that these micro-spherical structures were favorable for the deposition of QDs and a relatively higher light scattering effect was observed. This effectively enhanced light harvesting and led to an increase in the photocurrent of the QDSCs. As a result, a power conversion efficiency of 4.5% was obtained, which is 27.7% higher than that of QDSCs without scattering layers and 10.2% higher than that of QDSCs with traditional scattering layers composed of 20 and 400 nm TiO2 solid particles. We attribute this improvement to their higher light scattering effect and longer electron lifetimes.

  • 加载中
    1. [1]

      (1) Yu,W.W.; Qu, L. H.; Gao,W. Z.; Peng, X. G. Chem. Mater. 2010, 26, 560.

    2. [2]

      (2) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s

    3. [3]

      (3) Nozik, A. J. Inorg. Chem. 2005, 44, 6893. doi: 10.1021/ic0508425

    4. [4]

      (4) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J. B.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845

    5. [5]

      (5) Hanna, M. C.; Nozik, A. J. J. Appl. Phys. 2006, 100, 074510. doi: 10.1063/1.2356795

    6. [6]

      (6) Shockley,W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034

    7. [7]

      (7) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    8. [8]

      (8) Zhang, Q. X.; Guo, X. Z.; Huang, X. M.; Li, D. M.; Luo, Y. H.; Shen, Q.; Toyoda, T.; Meng, Q. B. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k

    9. [9]

      (9) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26, 2927.] doi: 10.3866/PKU.WHXB20101113

    10. [10]

      (10) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007. doi: 10.1021/ja0782706

    11. [11]

      (11) Guijarro, N.; Lana-Villarreal, T.; Lutz, T.; Haque, S. A.; Gómez, R. J. Phys. Chem. Lett. 2012, 3, 3367.

    12. [12]

      (12) Jovanovski, V.; nzález-Pedro, V.; Gimenez, S.; Azaceta, E.; Cabanero, G.; Grande, H.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J. J. Am. Chem. Soc. 2011, 133, 20156. doi: 10.1021/ja2096865

    13. [13]

      (13) Shengyuan, Y.; Nair, A. S.; Peining, Z.; Ramakrishna, S. Mater. Lett. 2012, 76,43. doi: 10.1016/j.matlet.2012.02.055

    14. [14]

      (14) Shi, J. F.; Fan, Y.; Xu, X. Q.; Xu, G.; Chen, L. H. Acta Phys. -Chim. Sin. 2012, 28, 857. [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华. 物理化学学报, 2012, 28, 857.] doi: 10.3866/PKU.WHXB201202204

    15. [15]

      (15) Paul, G. S.; Kim, J. H.; Kim, M. S.; Do, K.; Ko, J.; Yu, J. S. ACS Appl. Mater. Interfaces 2012, 4, 375. doi: 10.1021/am201452s

    16. [16]

      (16) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Chem. Soc. 1997, 80, 3157.

    17. [17]

      (17) Chou, T. P.; Zhang, Q. F.; Fryxell, G. E.; Cao, G. Z. Adv. Mater. 2007, 19, 2588. doi: 10.1002/adma.200602927

    18. [18]

      (18) Xu, X. Q.; Jiang, G. H.;Wan, Q. C.; Shi, J. F.; Xu, G.; Miao, L. Mater. Chem. Phys. 2012, 136, 1060. doi: 10.1016/j.matchemphys.2012.08.051

    19. [19]

      (19) Park, Y. C.; Chang, Y. J.; Kum, B. G.; Kong, E. H.; Son, J. Y.; Kown, Y. S.; Park, T.; Jang, H. M. J. Mater. Chem. 2011, 21, 9582. doi: 10.1039/c1jm11043h

    20. [20]

      (20) Duan, Y. D.; Fu, N. Q.; Fang, Y. Y.; Li, X. N.; Liu, Q. P.; Zhou, X.W.; Lin, Y. Electrochim. Acta 2013, 113, 109. doi: 10.1016/j.electacta.2013.09.057

    21. [21]

      (21) Duan, Y. D.; Fu, N. Q.; Liu, Q. P.; Fang, Y. Y.; Zhou, X.W.; Zhang, J. B.; Lin, Y. J. Phys. Chem. C 2012, 116, 8888. doi: 10.1021/jp212517k

    22. [22]

      (22) Zhang, Q. X.; Chen, G. P.; Yang, Y. Y.; Shen, X.; Zhang, Y. D.; Li, C. H.; Yu, R. C.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Phys. Chem. Chem. Phys. 2012, 14, 6479. doi: 10.1039/c2cp40568g

    23. [23]

      (23) Tachan, Z.; Shalom, M.; Hod, I.; Rühle, S.; Tirosh, S.; Zaban, A. J. Phys. Chem. C 2011, 115, 6162. doi: 10.1021/jp112010m

    24. [24]

      (24) Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison- Wesley Publishing Company: New York, 1978; pp 281-285.

    25. [25]

      (25) Zhang, X. T.; Zhou, G.W.; Xu, J.; Bai, G.W.;Wang, L. J. Solid State Chem. 2010, 183, 1394. doi: 10.1016/j.jssc.2010.04.016

    26. [26]

      (26) Feng, L.; Jia, J. G.; Fang, Y. Y.; Zhou, X.W.; Lin, Y. Electrochim. Acta 2013, 87, 629. doi: 10.1016/j.electacta.2012.09.037

    27. [27]

      (27) Fabregat-Santia , F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D. B.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2007, 111, 6550. doi: 10.1021/jp066178a

    28. [28]

      (28) Bisquert, J.; Fabregat-Santia , F.; Mora-Seró, I.; Garcia-Belmonte, G.; Gimenez, D. J. Phys. Chem. C 2009, 113, 17278. doi: 10.1021/jp9037649


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    9. [9]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    14. [14]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    15. [15]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    16. [16]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    19. [19]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    20. [20]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

Metrics
  • PDF Downloads(588)
  • Abstract views(560)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return