Citation: XU Qiong, ZHANG Tian-Lei, Lü Wen-Bin, WANG Rui, WANG Zhi-Yin, WANG Wen-Liang, WANG Zhu-Qing. Theoretical Study on the effect of a Single Water Molecule on the H2O2+Cl Gas Reaction[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1061-1070. doi: 10.3866/PKU.WHXB201404032 shu

Theoretical Study on the effect of a Single Water Molecule on the H2O2+Cl Gas Reaction

  • Received Date: 20 January 2014
    Available Online: 3 April 2014

    Fund Project:

  • The reaction mechanism and rate constant of the H2O2+Cl reaction, with and without a single water molecule, was investigated theoretically at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory. The calculated results show that there is only one channel for the formation of HO2+HCl in the naked H2O2+Cl reaction with an apparent activation energy of 10.21 kJ·mol-1. When one water molecule is added, the product of the reaction does not change, but the potential energy surface of the reaction becomes complex, yielding three different channels RW1, RW2, and RW3. The single water molecule in the RW1 and RW2 reaction channels has a negative influence on reducing the reaction barrier for the formation of HO2+HCl, whereas it has a positive influence in Channel RW3. Additionally, to estimate the importance of these processes in the atmosphere, their rate constants were evaluated using conventional transition state theory with the Wigner tunneling correction. The result shows that the rate constant for the naked H2O2+Cl reaction is 1.60×10-13 cm3 ·molecule-1 ·s-1 at 298.2 K, which is in od agreement with experimental values. Although the rate constant of channel RW3 is predicted to be 46.6-131 times larger than that of the naked H2O2+Cl reaction, its effective rate constant is smaller by 10-14 orders of magnitude than that of the naked reaction, that is, for the H2O2 + Cl reaction the naked reaction almost exclusively occurs under tropospheric conditions.

  • 加载中
    1. [1]

      (1) Marcy, T. P.; Fahey, D.W.; Gao, R. S.; Popp, P. J.; Richard, E. C.; Thompson, T. L.; Rosenlof, K. H.; Ray, E. A.; Salawitch, R. J.; Atherton, C. S.; Bergmann, D. J.; Ridley, B. A.;Weinheimer, A. J.; Loewenstein, M.;Weinstock, E. M.; Mahoney, M. J. Science 2004, 304 (5668), 261. doi: 10.1126/science.1093418

    2. [2]

      (2) Leu, M. T.; Demore,W. B. Chem. Phys. Lett. 1976, 41 (1), 121. doi: 10.1016/0009-2614(76)85261-X

    3. [3]

      (3) Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne,W. A.; Stief, L. J. J. Chem. Phys. 1977, 67 (8), 3533. doi: 10.1063/1.435351

    4. [4]

      (4) Keyser, L. F. J. Phys. Chem. 1980, 84 (1), 11. doi: 10.1021/j100438a004

    5. [5]

      (5) Poulet, G.; Le Bras, G.; Combourieu, J. J. Chem. Phys. 1978, 69 (2), 767.

    6. [6]

      (6) Marouani, S.; Koussa, H.; Bahri, M.; Hochlaf, M.; Batis, H. J. Mol. Struct. -Theochem 2009, 905 (1-3), 70. doi: 10.1016/j.theochem.2009.03.011

    7. [7]

      (7) Buszek, R. J.; Francisco, J. S.; Anglada, J. M. Int. Rev. Phys. Chem. 2011, 30 (3), 335. doi: 10.1080/0144235X.2011.634128

    8. [8]

      (8) Frost, G.; Vaida, V. J. Geophys. Res. 1995, 100 (D9), 18803. doi: 10.1029/95JD01940

    9. [9]

      (9) Tao, F. M. H.; K. Klemperer,W.; Nelson, D. D. Geophys Res. Lett. 1996, 23 (14), 1797. doi: 10.1029/96GL00947

    10. [10]

      (10) Aloisio, S.; Francisco, J. S. J. Phys. Chem. A. 1998, 102 (11), 1899. doi: 10.1021/jp972173p

    11. [11]

      (11) Long, B.; Tan, X. F.; Long, Z.W.;Wang, Y. B.; Ren, D. S.; Zhang,W. J. J. Phys. Chem. A 2011, 115 (24), 6559. doi: 10.1021/jp200729q

    12. [12]

      (12) Zhang, T. L.;Wang,W. L.; Zhang, P.; Lu, J.; Zhang, Y. Phys. Chem. Chem. Phys. 2011, 13 (46), 20794.

    13. [13]

      (13) Zhang, T. L.; Li, G. N.;Wang,W. L.; Du, Y. M.; Li, C. Y.; Lu, J. Comput. Theor. Chem. 2012, 991, 13.

    14. [14]

      (14) Stone, D.; Rowley, D. M. Phys. Chem. Chem. Phys. 2005, 7 (10), 2156. doi: 10.1039/b502673c

    15. [15]

      (15) nzalez, J.; Anglada, J. M. J. Phys. Chem. A 2010, 114 (34), 9151. doi: 10.1021/jp102935d

    16. [16]

      (16) Ryzhkov, A. B.; Ariya, P. A. Phys. Chem. Chem. Phys. 2004, 6 (21), 5042. doi: 10.1039/b408414d

    17. [17]

      (17) Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J. S.; Troe, J.; Abel, B. Science 2007, 315 (5811), 497. doi: 10.1126/science.1134494

    18. [18]

      (18) Anglada, J. M.; nzalez, J. ChemPhysChem 2009, 10 (17), 3034. doi: 10.1002/cphc.200900387

    19. [19]

      (19) Luo, Y. M.; S. Ohno, K. Chem. Phys. Lett. 2009, 469 (1-3), 57. doi: 10.1016/j.cplett.2008.12.087

    20. [20]

      (20) Vohringer-Martinez, E.; Tellbach, E.; Liessmann, M.; Abel, B. J. Phys. Chem. A 2010, 114 (36), 9720. doi: 10.1021/jp101804j

    21. [21]

      (21) Yung, Y. L.; DeMore,W. B.; Yuk, L. Y.; DeMore,W. B., Photochemistry of Planetory Atmospheres; Oxford University Press: New York, 1999; Vol. 1.

    22. [22]

      (22) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90 (4), 2154.

    23. [23]

      (23) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head rdon, M. Chem. Phys. Lett. 1989, 157 (6), 479. doi: 10.1016/S0009-2614(89)87395-6

    24. [24]

      (24) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al . Gaussian 09, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2009.

    25. [25]

      (25) Zhang, S.W.; Truong, N. T. VKLab, version 1.0; University of Utah: Salt Lake City, 2001.

    26. [26]

      (26) Lu, Y. X.;Wang,W. L.;Wang,W. N.; Liu, Y. Y.; Zhang, Y. Acta Chim. Sin. 2010, 68 (13), 1253. [卢彦霞, 王文亮, 王渭娜, 刘英英, 张越. 化学学报, 2010, 68 (13), 1253.]

    27. [27]

      (27) Si,W. J.; Zhuo, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 974. [司维江, 禚淑萍, 居冠之. 物理化学学报, 2003, 19 (10), 974.] doi: 10.3866/PKU.WHXB20031019

    28. [28]

      (28) From the NIST ChemistryWebbook, http://webbook.nist. v/chemistry.

    29. [29]

      (29) Lee, T. J.; Taylor, P. R. Int. J. Quantum. Chem. 1989, 36 (S23) 199.

    30. [30]

      (30) Garrett, B. C.; Truhlar, D. G. J. Chem. Phys. 1979, 70 (4), 1593. doi: 10.1063/1.437698

    31. [31]

      (31) Hammond, G. S. J. Am. Chem. Soc. 1955, 77 (2), 334. doi: 10.1021/ja01607a027

    32. [32]

      (32) Zhao, Y. G.; Zhou, X. G.; Yu, F.; Dai, J. H.; Liu, S. L. Acta Phys. -Chim. Sin. 2006, 22 (9), 1095. [赵英国, 周晓国, 于锋, 戴静华, 刘世林. 物理化学学报, 2006, 22 (9), 1095.] doi: 10.1016/S1872-1508(06)60050-8

    33. [33]

      (33) Anglada, J. M.; Domin , V. M. J. Phys. Chem. A 2005, 109 (47), 10786. doi: 10.1021/jp054018d

    34. [34]

      (34) Zhang,W. C. D.; Du, B. N. J. Mol. Struct. -Theochem 2006, 760 (1-3), 131. doi: 10.1016/j.theochem.2005.12.004


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(574)
  • Abstract views(832)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return