Citation: WU Nan, HE Zhi-Qun, XU Min, XIAO Wei-Kang. Recent Developments of Azatriphenylene Materials as n-Type Organic Semiconductors[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1001-1016. doi: 10.3866/PKU.WHXB201404012 shu

Recent Developments of Azatriphenylene Materials as n-Type Organic Semiconductors

  • Received Date: 21 January 2014
    Available Online: 1 April 2014

    Fund Project:

  • Discotic liquid crystals are a new class of organic electronic materials, and most of these materials display hole-transporting properties. n-Type discotic materials with electro n-transporting properties are rare. Azatriphenylene is one of the most important discotic materials having similar structure to triphenylene derivatives. The introduction of nitrogen atom(s) into the molecular structure of azatriphenylene enhanced its electron affinity properties, making the azatriphenylene derivatives potential n-type organic semiconductors and important materials in terms of their application in optoelectronic devices. This paper reviews recent research progress towards the development of discotic azatriphenylene derivatives, provides discussion on their synthetic methodologies, and accesses their properties as well as their molecular structures such as di-azatriphenylene, tetra-azatriphenylene, and hexa-azatriphenylene. As potential n-type organic semiconductors, the prospective applications of the azatriphenylene materials in optoelectronic devices are explored.

  • 加载中
    1. [1]

      (1) Chandrasekhar, S.; Sadashiva, B.; Suresh, K. Pramana 1977, 9, 471. doi: 10.1007/BF02846252

    2. [2]

      (2) Billard, J.; Dubois, J.; Tinh, N. H.; Zann, A. Nouv. J. Chimie 1978, 2, 535.

    3. [3]

      (3) Kumar, S. Liquid Crystals 2004, 31, 1037. doi: 10.1080/02678290410001724746

    4. [4]

      (4) Kumar, S. Liquid Crystals 2005, 32, 1089. doi: 10.1080/02678290500117415

    5. [5]

      (5) Pérez, D.; Guitián, E. Chemical Society Reviews 2004, 33, 274. doi: 10.1039/b305549n

    6. [6]

      (6) Mao, H. X.; He, Z. Q.; Zhang, C. X. Chin. J. Org. Chem. 2006, 26, 413. [毛华香, 何志群, 张春秀. 有机化学, 2006, 26, 413.]

    7. [7]

      (7) Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Haarer, D.; Schuhmacher, P.; Siemensmeyer, K. Physical Review Letters 1993, 70, 457. doi: 10.1103/PhysRevLett.70.457

    8. [8]

      (8) Adam, D.; Schuhmacher, P.; Simmerer, J.; Hussling, L.; Siemensmeyer, K.; Etzbachi, K.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141. doi: 10.1038/371141a0

    9. [9]

      (9) Van de Craats, A. M.;Warman, J. M.; de Haas, M. P.; Adam, D.; Simmerer, J.; Haarer, D.; Schuhmacher, P. Advanced Materials 1996, 8, 823. doi: 10.1002/adma.19960081012

    10. [10]

      (10) Van de Craats, A. M.;Warman, J. M. Advanced Materials 2001, 13, 130. doi: 10.1002/1521-4095(200101)13:2<130::AID-ADMA130>3.0.CO;2-L

    11. [11]

      (11) Warman, J. M.; Van de Craats, A. M. Molecular Crystals and Liquid Crystals 2003, 396, 41. doi: 10.1080/15421400390213186

    12. [12]

      (12) Donovan, K.; Kreouzis, T.; Scott, K.; Bunning, J.; Bushby, R.; Boden, N.; Lozman, O.; Movaghar, B. Molecular Crystals and Liquid Crystals 2003, 396, 91. doi: 10.1080/15421400390213221

    13. [13]

      (13) Iino, H.; Hanna, J. I.; Jäger, C.; Haarer, D. Molecular Crystals and Liquid Crystals 2005, 436, 217.

    14. [14]

      (14) Bayer, A.; Zimmermann, S.;Wendorff, J. Molecular Crystals and Liquid Crystals 2003, 396, 1. doi: 10.1080/15421400390213159

    15. [15]

      (15) Lüssem, G.;Wendorff, J. Polymers for Advanced Technologies 1998, 9, 443. doi: 10.1002/(SICI)1099-1581(199807)9:7<443::AID-PAT799>3.0.CO;2-R

    16. [16]

      (16) Freudenmann, R.; Behnisch, B.; Hanack, M. J. Mater. Chem. 2001, 11, 1618. doi: 10.1039/b100083g

    17. [17]

      (17) Bacher, A.; Bleyl, I.; Erdelen, C. H.; Haarer, D.; Paulus,W.; Schmidt, H.W. Advanced Materials 1997, 9, 1031. doi: 10.1002/adma.19970091307

    18. [18]

      (18) Seguy, I.; Destruel, P.; Bock, H. Synthetic Metals 2000, 111, 15.

    19. [19]

      (19) Mao, H.; He, Z.;Wang, J.; Zhang, C.; Xie, P.; Zhang, R. Journal of Luminescence 2007, 122, 942.

    20. [20]

      (20) Scott, K.; Donovan, K.; Kreouzis, T.; Bunning, J.; Bushby, R.; Boden, N.; Lozman, O. Molecular Crystals and Liquid Crystals 2003, 397, 253. doi: 10.1080/714965610

    21. [21]

      (21) Schmidt-Mende, L.; Fechtenktter, A.; Müllen, K.; Moons, E.; Friend, R.; MacKenzie, J. Science 2001, 293, 1119. doi: 10.1126/science.293.5532.1119

    22. [22]

      (22) Seguy, I.; Jolinat, P.; Destruel, P.; Farenc, J.; Mamy, R.; Bock, H.; Ip, J.; Nguyen, T. P. Journal of Applied Physics 2001, 89, 5442. doi: 10.1063/1.1365059

    23. [23]

      (23) Kumar, S. Current Science-Bangalore 2002, 82, 256.

    24. [24]

      (24) Pisula,W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Müllen, K. Advanced Materials 2005, 17, 684. doi: 10.1002/adma.200401171

    25. [25]

      (25) Saragi, T. P.; Reichert, T.; Scheffler, A.; Kussler, M.; Salbeck, J. Synthetic Metals 2012, 162, 1572. doi: 10.1016/j.synthmet.2012.07.021

    26. [26]

      (26) Forget, S.; Kitzerow, H. S. Liquid Crystals 1997, 23, 919. doi: 10.1080/026782997207867

    27. [27]

      (27) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Advanced Materials 2010, 22, 3876. doi: 10.1002/adma.200903628

    28. [28]

      (28) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C.W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194. doi: 10.1038/nature03376

    29. [29]

      (29) Ando, S.; Murakami, R.; Nishida, J. I.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. Journal of the American Chemical Society 2005, 127, 14996. doi: 10.1021/ja055686f

    30. [30]

      (30) Tonzola, C. J.; Alam, M. M.; Kaminsky,W.; Jenekhe, S. A. Journal of the American Chemical Society 2003, 125, 13548. doi: 10.1021/ja036314e

    31. [31]

      (31) Bao, Z. Advanced Materials 2000, 12, 227. doi: 10.1002/(SICI)1521-4095(200002)12:3<227::AID-ADMA227>3.0.CO;2-U

    32. [32]

      (32) Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H.; Li,W. Nature 2000, 403, 521. doi: 10.1038/35000530

    33. [33]

      (33) Briseno, A. L.; Mannsfeld, S. C.; Reese, C.; Hancock, J. M.; Xiong, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Nano Letters 2007, 7, 2847. doi: 10.1021/nl071495u

    34. [34]

      (34) Jang, J.; Nam, S.; Chung, D. S.; Kim, S. H.; Yun,W. M.; Park, C. E. Advanced Functional Materials 2010, 20, 2611. doi: 10.1002/adfm.201000383

    35. [35]

      (35) Chikamatsu, M.; Taima, T.; Yoshida, Y.; Saito, K.; Yase, K. Applied Physics Letters 2004, 84, 127. doi: 10.1063/1.1637943

    36. [36]

      (36) Lee, T.W.; Byun, Y.; Koo, B.W.; Kang, I. N.; Lyu, Y. Y.; Lee, C. H.; Pu, L.; Lee, S. Y. Advanced Materials 2005, 17, 2180. doi: 10.1002/adma.200401672

    37. [37]

      (37) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chemical Reviews 2007, 107, 1324. doi: 10.1021/cr050149z

    38. [38]

      (38) Friend, R.; Gymer, R.; Holmes, A.; Burroughes, J.; Marks, R.; Taliani, C.; Bradley, D.; DosSantos, D.; Bredas, J.; Logdlund, M. Nature 1999, 397, 121. doi: 10.1038/16393

    39. [39]

      (39) Galán-Mascarós, J. R.; Dunbar, K. R. Chemical Communications 2001, 217.

    40. [40]

      (40) Grove, H.; Sletten, J.; Julve, M.; Lloret, F. Journal of the Chemical Society, Dalton Transactions 2001, 1029.

    41. [41]

      (41) Marshall, S. R.; Rhein ld, A. L.; Dawe, L. N.; Shum,W.W.; Kitamura, C.; Miller, J. S. Inorganic Chemistry 2002, 41, 3599. doi: 10.1021/ic020176x

    42. [42]

      (42) Nasielski-Hinkens, R.; Benedek-Vamos, M.; Maetens, D.; Nasielski, J. Journal of Organometallic Chemistry 1981, 217, 179. doi: 10.1016/S0022-328X(00)85778-2

    43. [43]

      (43) Ishi-i, T.; Murakami, K. I.; Imai, Y.; Mataka, S. The Journal of Organic Chemistry 2006, 71, 5752. doi: 10.1021/jo060768n

    44. [44]

      (44) Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; Van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A. Journal of the American Chemical Society 2004, 126, 3271. doi: 10.1021/ja0390956

    45. [45]

      (45) Ding, F. J.; Zhao, K. Q. Chemical Research and Application 2006, 18, 795. [丁涪江, 赵可清. 化学研究与应用, 2006, 18, 795.]

    46. [46]

      (46) Hu, D.; Cai, J.; Chen, J. R.; Li, Q.; Zhao, K. Q. Chin. Phys. Soc. 2008, 57, 5464. [胡丹, 蔡静, 陈俊蓉, 李权, 赵可清. 物理学报, 2008, 57, 5464.]

    47. [47]

      (47) Nan, G. J.; Zheng, R. H.; Shi, Q.; Shuai, Z. G. Acta Phys. -Chim. Sin. 2010, 26, 7. [南广军, 郑仁慧, 史强, 帅志刚. 物理化学学报, 2010, 26, 7.] doi: 10.3866/PKU.WHXB20100120

    48. [48]

      (48) pee, H.; Kong, X.; He, Z.; Chambrier, I.; Hughes, D. L.; Tizzard, G. J.; Coles, S. J.; Cammidge, A. N. The Journal of Organic Chemistry 2013, 78, 9505. doi: 10.1021/jo401551c

    49. [49]

      (49) Wang, T.; Zhou, E. L. Polyme Bulletin 1993, 1, 33. [王涛, 周恩乐. 高分子通报, 1993, 1, 33.]

    50. [50]

      (50) Cammidge, A. N.; Bushby, R. J. Synthesis and Structural Features. In Handbook of Liquid Crystals, Vol. 2B; Demus, D., odby, J.W., Gray, G.W., Spiess, H.W., Vill, V. Eds.;Wiley-VCH:Weinheim, 1998; pp 693-748.

    51. [51]

      (51) Zheng, X. P.; He, Z. Q.; Zhang, C. X.;Wang, Y. S. Journal of Functional Materials 2005, 36, 321. [郑效盼, 何志群, 张春秀, 王永生. 功能材料, 2005, 36, 321.]

    52. [52]

      (52) Kato, T.; Mizoshita, N.; Kishimoto, K. Angewandte Chemie International Edition 2006, 45, 38. doi: 10.1002/anie.200501384

    53. [53]

      (53) Kumar, S. Chemical Society Reviews 2006, 35, 83. doi: 10.1039/b506619k

    54. [54]

      (54) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angewandte Chemie International Edition 2007, 46,4832. doi: 10.1002/anie.200604203

    55. [55]

      (55) Wu, J.; Pisula,W.;Müllen, K. Chemical Reviews 2007, 107, 718. doi: 10.1021/cr068010r

    56. [56]

      (56) Wang, X. Z.;Wang, X. F. Materials Review 2009, 23, 93. [王学智, 王秀峰. 材料导报, 2009, 23, 93.]

    57. [57]

      (57) Bisoyi, H. K.; Kumar, S. Chemical Society Reviews 2010, 39, 264. doi: 10.1039/b901792p

    58. [58]

      (58) Chen, S. S.; Li, T.; Zhao, D. H. Acta Phys. -Chim. Sin. 2010, 26, 1124. [陈树森, 李田, 赵达慧. 物理化学学报, 2010, 26, 1124.] doi: 10.3866/PKU.WHXB20100412

    59. [59]

      (59) Kumar, S. Chemistry of Discotic Liquid Crystals, from Monomers to Polymers; CRC Press, Taylor & Francis Group: Boca Raton, 2010.

    60. [60]

      (60) Mohr, B.;Wegner, G.; Ohta, K. J. Chem. Soc., Chem. Commun. 1995, 995.

    61. [61]

      (61) Foster, E. J.; Babuin, J.; Nguyen, N.;Williams, V. E. Chemical Communications 2004, 2052.

    62. [62]

      (62) Kong, X. F.; He, Z. Q.; Xu, M.; Liang, C. J.; Chen, B.; Jing, X. P. Journal of Beijing Jiaotong University 2011, 35, 1. [ 孔翔飞, 何志群, 许敏, 梁春军, 陈博, 荆西平. 北京交通大学学报, 2011, 35, 1.]

    63. [63]

      (63) Kong, X.; He, Z.; Xu, M.; Liang, C.; Jing, X. Functional Materials Letters 2011, 4, 345. doi: 10.1142/S1793604711002184

    64. [64]

      (64) Terasawa, N.; Monobe, H.; Kiyohara, K.; Shimizu, Y. Chemical Communications 2003, 1678.

    65. [65]

      (65) Foster, E. J.; Jones, R. B.; Lavigueur, C.;Williams, V. E. Journal of the American Chemical Society 2006, 128, 8569. doi: 10.1021/ja0613198

    66. [66]

      (66) Babuin, J.; Foster, J.;Williams, V. E. Tetrahedron Letters 2003, 44, 7003. doi: 10.1016/S0040-4039(03)01798-2

    67. [67]

      (67) Lavigueur, C.; Foster, E. J.;Williams, V. E. Journal of the American Chemical Society 2008, 130, 11791. doi: 10.1021/ja803406k

    68. [68]

      (68) Foster, E. J.; Lavigueur, C.; Ke, Y. C.;Williams, V. E. Journal of Materials Chemistry 2005, 15, 4062. doi: 10.1039/b503310a

    69. [69]

      (69) Lavigueur, C.; Foster, J. E.;Williams, V. E. Liquid Crystals 2007, 34, 833. doi: 10.1080/02678290701407243

    70. [70]

      (70) Sergeyev, S.; Pisula,W.; Geerts, Y. H. Chemical Society Reviews 2007, 36, 1902. doi: 10.1039/b417320c

    71. [71]

      (71) Cozzi, F.; Ponzini, F.; Annunziata, R.; Cinquini, M.; Siegel, J. S. Angewandte Chemie International Edition in English 1995, 34, 1019. doi: 10.1002/anie.199510191

    72. [72]

      (72) Zhang, L.; Yue, S.; Li, B.; Fan, D. Inorganica Chimica Acta 2012, 384, 225. doi: 10.1016/j.ica.2011.12.002

    73. [73]

      (73) Ge, H.;Wei,W.; Shuai, P.; Lei, G.; Qing, S. Journal of Luminescence 2011, 131, 238. doi: 10.1016/j.jlumin.2010.10.004

    74. [74]

      (74) Palma, M.; Levin, J.; Lemaur, V.; Liscio, A.; Palermo, V.; Cornil, J.; Geerts, Y.; Lehmann, M.; Samori, P. Advanced Materials 2006, 18, 3313. doi: 10.1002/adma.200601437

    75. [75]

      (75) Mahoney, S. J.; Ahmida, M. M.; Kayal, H.; Fox, N.; Shimizu, Y.; Eichhorn, S. H. Journal of Materials Chemistry 2009, 19, 9221. doi: 10.1039/b914290h

    76. [76]

      (76) Gao, B.; Xia, D.; Geng, Y.; Cheng, Y.;Wang, L. Tetrahedron Letters 2010, 51, 1919. doi: 10.1016/j.tetlet.2010.02.039

    77. [77]

      (77) Gao, B.; Liu, Y.; Geng, Y.; Cheng, Y.;Wang, L.; Jing, X.; Wang, F. Tetrahedron Letters 2009, 50, 1649. doi: 10.1016/j.tetlet.2009.01.126

    78. [78]

      (78) Ishi-i, T.; Hirayama, T.; Murakami, K. I.; Tashiro, H.; Thiemann, T.; Kubo, K.; Mori, A.;Yamasaki, S.; Akao, T.; Tsuboyama, A. Langmuir 2005, 21, 1261. doi: 10.1021/la047874+

    79. [79]

      (79) Li, J.; He, Z.; pee, H.; Cammidge, A. N. Organic Letters 2010, 12, 472. doi: 10.1021/ol902637z

    80. [80]

      (80) Wang, R.; Okajima, T.; Kitamura, F.; Matsumoto, N.; Thiemann, T.; Mataka, S.; Ohsaka, T. The Journal of Physical Chemistry B 2003, 107, 9452. doi: 10.1021/jp0305281

    81. [81]

      (81) Wang, R.; Ramaraj, R.; Okajima, T.; Kitamura, F.; Matsumoto, N.; Thiemann, T.; Mataka, S.; Ohsaka, T. Journal of Electroanalytical Chemistry 2004, 567, 85. doi: 10.1016/j.jelechem.2003.12.016

    82. [82]

      (82) Ishi-i, T.; Murakami, K. I.; Imai, Y.; Mataka, S. Organic Letters 2005, 7, 3175. doi: 10.1021/ol050919t

    83. [83]

      (83) Hirayama, T.; Yamasaki, S.; Ameku, H.; Ishi-i, T.; Thiemann, T.; Mataka, S. Dyes and Pigments 2005, 67, 105. doi: 10.1016/j.dyepig.2004.09.023

    84. [84]

      (84) Boden, N.; Bushby, R. J.; Cooke, G.; Lozman, O. R.; Lu, Z. Journal of the American Chemical Society 2001, 123, 7915. doi: 10.1021/ja003443b

    85. [85]

      (85) Arikainen, E. O.; Boden, N.; Bushby, R. J.; Lozman, O. R.; Vinter, J. G.;Wood, A. Angewandte Chemie International Edition 2000, 39, 2333. doi: 10.1002/1521-3773(20000703)39:13<2333::AID-ANIE2333>3.0.CO;2-V

    86. [86]

      (86) Lozman, O. R.; Bushby, R. J.; Vinter, J. G. Journal of the Chemical Society, Perkin Transactions 2 2001, 1446.

    87. [87]

      (87) Oliva, M. M.; Juárez, R.; Ramos, M.; Segura, J. L.; Cleuvenbergen, S. V.; Clays, K.; odson, T., III; Navarrete, J. T. L. P.; Casado, J. The Journal of Physical Chemistry C 2012, 117, 626.

    88. [88]

      (88) Cho, B. R.; Lee, S. K.; Kim, K. A.; Son, K. N.; Kang, T. I.; Jeon, S. J. Tetrahedron Letters 1998, 39, 9205. doi: 10.1016/S0040-4039(98)02098-X

    89. [89]

      (89) Tao, Z. G.; Zhao, X.; Jiang, X. K.; Li, Z. T. Tetrahedron Letters 2012, 53, 1840. doi: 10.1016/j.tetlet.2012.01.137

    90. [90]

      (90) Beeson, J. C.; Fitzgerald, L. J.; Gallucci, J. C.; Gerkin, R. E.; Rademacher, J. T.; Czarnik, A.W. Journal of the American Chemical Society 1994, 116, 4621. doi: 10.1021/ja00090a010

    91. [91]

      (91) Cornil, J.; Lemaur, V.; Calbert, J. P.; Brédas, J. L. Advanced Materials 2002, 14, 726. doi: 10.1002/1521-4095(20020517)14:10<726::AID-ADMA726>3.0.CO;2-D

    92. [92]

      (92) Reichert, T.; Saragi, T. P. I.; Salbeck, J. RSC Advances 2012, 2, 7388. doi: 10.1039/c2ra20901b

    93. [93]

      (93) Lin, H.W.; Lin,W. C.; Chang, J. H.;Wu, C. I. Organic Electronics 2013, 14, 1204. doi: 10.1016/j.orgel.2013.02.011

    94. [94]

      (94) Liao, L. S.; Slusarek,W. K.; Hatwar, T. K.; Ricks, M. L.; Comfort, D. L. Advanced Materials 2008, 20, 324. doi: 10.1002/adma.200700454

    95. [95]

      (95) Falkenberg, C.; Olthof, S.; Rieger, R.; Baumgarten, M.; Muellen, K.; Leo, K.; Riede, M. Solar Energy Materials and Solar Cells 2011, 95, 927. doi: 10.1016/j.solmat.2010.11.024

    96. [96]

      (96) Frank, P.; Koch, N.; Koini, M.; Rieger, R.; Müllen, K.; Resel, R.;Winkler, A. Chemical Physics Letters 2009, 473, 321. doi: 10.1016/j.cplett.2009.04.019

    97. [97]

      (97) Jang, S. E.; Lee, J. Y. Synthetic Metals 2011, 161, 40. doi: 10.1016/j.synthmet.2010.10.031

    98. [98]

      (98) Furukawa, S.; Okubo, T.; Masaoka, S.; Tanaka, D.; Chang, H. C.; Kitagawa, S. Angewandte Chemie International Edition 2005, 44, 2700. doi: 10.1002/anie.200462962

    99. [99]

      (99) Bröker, B.; Hofmann, O.; Rangger, G.; Frank, P.; Blum, R. P.; Rieger, R.; Venema, L.; Vollmer, A.; Müllen, K.; Rabe, J. Physical Review Letters 2010, 104, 246805. doi: 10.1103/PhysRevLett.104.246805

    100. [100]

      (100) Frank, P.; Djuric, T.; Koini, M.; Salzmann, I.; Rieger, R.; Müllen, K.; Resel, R.; Koch, N.;Winkler, A. The Journal of Physical Chemistry C 2010, 114, 6650. doi: 10.1021/jp100704v

    101. [101]

      (101) Glowatzki, H.; Bröker, B.; Blum, R. P.; Hofmann, O. T.; Vollmer, A.; Rieger, R.; Müllen, K.; Zojer, E.; Rabe, J. R. P.; Koch, N. Nano Letters 2008, 8, 3825. doi: 10.1021/nl8021797

    102. [102]

      (102) Perova, T.; Tsvetkov, S.; Vij, J.; Kumar, S. Molecular Crystals and Liquid Crystals 2000, 351, 95. doi: 10.1080/10587250008023257

    103. [103]

      (103) Ichimura, K.; Furumi, S.; Morino, S.; Kidowaki, M.; Nakagawa, M.; Ogawa, M.; Nishiura, Y. Advanced Materials 2000, 12, 950. doi: 10.1002/1521-4095(200006)12:13<950::AID-ADMA950>3.0.CO;2-V

    104. [104]

      (104) Monobe, H.; Kiyohara, K.; Heya, M.; Awazu, K.; Shimizu, Y. Molecular Crystals and Liquid Crystals 2003, 397, 59. doi: 10.1080/714965596

    105. [105]

      (105) Jeon, S. O.; Lee, J. Y. Journal of Industrial and Engineering Chemistry 2012, 18, 661. doi: 10.1016/j.jiec.2011.11.056

    106. [106]

      (106) Cho, S. H.; Pyo, S.W.; Suh, M. C. Synthetic Metals 2012, 162, 402. doi: 10.1016/j.synthmet.2011.12.028

    107. [107]

      (107) Najafabadi, E.; Knauer, K. A.; Haske,W.; Kippelen, B. Organic Electronics 2013, 14, 1217

    108. [108]

      (108) Juárez, R.; Ramos, M. M.; Segura, J. L. Tetrahedron Letters 2007, 48, 8829. doi: 10.1016/j.tetlet.2007.10.069

    109. [109]

      (109) Gearba, R. I.; Lehmann, M.; Levin, J.; Ivanov, D. A.; Koch, M. H.; Barbera, J.; Debije, M. G.; Piris, J.; Geerts, Y. H. Advanced Materials 2003, 15, 1614. doi: 10.1002/adma.200305137

    110. [110]

      (110) Chang, T. H.;Wu, B. R.; Chiang, M. Y.; Liao, S. C.; Ong, C. W.; Hsu, H. F.; Lin, S. Y. Organic Letters 2005, 7, 4075. doi: 10.1021/ol051231j

    111. [111]

      (111) Zhang, X.; Zhao, Q.; Liu, X.; Hu, T.; Han, J.; Ruan,W.; Bu, X. Talanta 2013, 108, 150. doi: 10.1016/j.talanta.2013.02.071

    112. [112]

      (112) Skujins, S.;Webb, G. Tetrahedron 1969, 25, 3935. doi: 10.1016/S0040-4020(01)82926-4

    113. [113]

      (113) Kestemont, G.; De Halleux, V.; Lehmann, M.; Ivanov, D. A.; Watson, M.; Geerts, Y. H. Chemical Communications 2001, 2074.

    114. [114]

      (114) Kitagawa, S.; Masaoka, S. Coordination Chemistry Reviews 2003, 246, 73. doi: 10.1016/S0010-8545(03)00109-7

    115. [115]

      (115) Ha, S. D.; Kaafarani, B. R.; Barlow, S.; Marder, S. R.; Kahn, A. The Journal of Physical Chemistry C 2007, 111, 10493. doi: 10.1021/jp0718404

    116. [116]

      (116) Lehmann, M.; Kestemont, G.; Gómez Aspe, R.; Buess-Herman, C.; Koch, M. H. J.; Debije,M. G.; Piris, J.; de Haas, M. P.;Warman, J. M.;Watson, M. D.; Lemaur, V.; Cornil, J.; Geerts, Y. H.; Gearba, R.; Ivanov, D. A. Chemistry -A European Journal 2005, 11, 3349. doi: 10.1002/chem.200400586

    117. [117]

      (117) Lehmann, M.; Lemaur, V.; Cornil, J.; Brédas, J. L.; ddard, S.; Grizzi, I.; Geerts, Y. Tetrahedron 2004, 60, 3283. doi: 10.1016/j.tet.2004.01.083

    118. [118]

      (118) Ong, C.W.; Liao, S. C.; Chang, T. H.; Hsu, H. F. Tetrahedron Letters 2003, 44, 1477. doi: 10.1016/S0040-4039(02)02862-9

    119. [119]

      (119) Ong, C.W.; Liao, S. C.; Chang, T. H.; Hsu, H. F. The Journal of Organic Chemistry 2004, 69, 3181. doi: 10.1021/jo035840l

    120. [120]

      (120) Yeh, M. C.; Liao, S. C.; Chao, S. H.; Ong, C.W. Tetrahedron 2010, 66, 8888. doi: 10.1016/j.tet.2010.09.064

    121. [121]

      (121) Kaafarani, B. R.; Kondo, T.; Yu, J.; Zhang, Q.; Dattilo, D.; Risko, C.; Jones, S. C.; Barlow, S.; Domercq, B.; Amy, F. Journal of the American Chemical Society 2005, 127, 16358.doi: 10.1021/ja0553147

    122. [122]

      (122) Ishi-i, T.; Amemori, S.; Okamura, C.; Yanaga, K.; Kuwahara, R.; Mataka, S.; Kamada, K.Tetrahedron 2013, 69, 29. doi: 10.1016/j.tet.2012.10.070

    123. [123]

      (123) Ishi-i, T.; Yaguma, K.; Kuwahara, R.; Taguri, Y.; Mataka, S. Organic Letters 2006, 8, 585. doi: 10.1021/ol052779t

    124. [124]

      (124) Ishi-i, T.; Hirashima, R.; Tsutsumi, N.; Amemori, S.; Matsuki, S.; Teshima, Y.; Kuwahara, R.; Mataka, S. The Journal of Organic Chemistry 2010, 75, 6858. doi: 10.1021/jo101212d

    125. [125]

      (125) Juárez, R.; Oliva, M. M.; Ramos, M.; Segura, J. L.; Alemán, C.; Rodríguez-Ropero, F.; Curcó, D.; Montilla, F.; Coropceanu, V.; Brédas, J. L.; Qi, Y.; Kahn, A.; Ruiz Delgado, M. C.; Casado, J.; LópezNavarrete, J. T. Chemistry-A European Journal 2011, 17, 10312. doi: 10.1002/chem.201101198

    126. [126]

      (126) Liu, X. M.; Zhao, Q.; Song,W. C.; Bu, X. H. Chemistry-A European Journal 2012, 18, 2806. doi: 10.1002/chem.201102725

    127. [127]

      (127) Klivansky, L. M.; Hanifi, D.; Koshkakaryan, G.; Holycross, D. R.; rski, E. K.;Wu, Q.; Chai, M.; Liu, Y. Chemical Science 2012, 3, 2009. doi: 10.1039/c2sc20241g

    128. [128]

      (128) Salomon, E.; Zhang, Q.; Barlow, S.; Marder, S. R.; Kahn, A. Organic Electronics 2008, 9, 944. doi: 10.1016/j.orgel.2008.06.015

    129. [129]

      (129) Ha, S. D.; Zhang, Q.; Barlow, S.; Marder, S. R.; Kahn, A. Physical Review B 2008, 77, 085433. doi: 10.1103/PhysRevB.77.085433

    130. [130]

      (130) Pieterse, K.; van Hal, P. A.; Kleppinger, R.; Vekemans, J. A.; Janssen, R. A.; Meijer, E. Chemistry of Materials 2001, 13, 2675. doi: 10.1021/cm010181j

    131. [131]

      (131) Gao, B.; Zhang, L.; Bai, Q.; Li, Y.; Yang, J.;Wang, L. New Journal of Chemistry 2010, 34, 2735. doi: 10.1039/c0nj00586j


  • 加载中
    1. [1]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(836)
  • Abstract views(942)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return