Citation: LI Li, HU Zhong-Ai, YANG Yu-Ying, WU Hong-Ying, CUI Lu-Juan. Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 899-907. doi: 10.3866/PKU.WHXB201403261 shu

Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance

  • Received Date: 12 December 2013
    Available Online: 26 March 2014

    Fund Project:

  • A hetero-layered MnO2/NiCo2O4 composite was fabricated according to an electrostatic self-assembly process between negatively charged MnO2-layered nanosheets and positively charged Co-Ni-layered double hydroxide nanosheets, followed by a heat-treatment process. The morphology, composition, and microstructure characteristics of the resulting material were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectrometry, atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Furthermore, the electrochemical behaviors of the composite were evaluated by cyclic voltammetry (CV), galvanostatic chargedischarge, and electrochemical impedance spectroscopy (EIS). The test results indicated that the hetero-layered composite showed porous stacking structure, which increased the effective liquid-solid interfacial area, and provided a fast path for the insertion and extraction of electrolyte ions. A specific capacitance of 482 F·g-1 was obtained in the potential window from-0.6 to 0.45 V at a current density of 1 A·g-1. These values were therefore superior to those of pure MnO2 or pure NiCo2O4.

  • 加载中
    1. [1]

      (1) Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. ACS Nano 2012, 6, 2693. doi: 10.1021/nn300082k

    2. [2]

      (2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418. doi: 10.1126/science.1070821

    3. [3]

      (3) Choi, B. G.; Huh, Y. S.; Hong, W. H.; Kim, H. J.; Park, H. S. Nanoscale 2012, 4, 5394. doi: 10.1039/c2nr31215h

    4. [4]

      (4) Yuan, C. Z.; Gao, B.; Shen, L. F.; Yang, S. D.; Hao, L.; Lu, X. J.; Zhang, F.; Zhang, L. J.; Zhang, X. G. Nanoscale 2011, 3, 529. doi: 10.1039/c0nr00423e

    5. [5]

      (5) Wang, H.W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Wu, H. Y.; Zhang, Z. Y.; Yang, Y. Y. J. Mater. Chem. 2011, 21, 10504. doi: 10.1039/c1jm10758e

    6. [6]

      (6) Park, J. S.; Cho, S. M.; Kim, W. J.; Park, J.; Yoo, P. J. ACS Appl. Mater. Interfaces 2011, 3, 360. doi: 10.1021/am100977p

    7. [7]

      (7) Yu, D. S.; Dai, L. M. J. Phys. Chem. Lett. 2009, 1, 467.

    8. [8]

      (8) Zhou, Y. Z.; Yang, J.; Sun, L.; Zhao, N.; Cheng, X. N. Chin. J. Inorg. Chem. 2012, 28, 137. [周亚洲, 杨娟, 孙磊, 赵南, 程晓农. 无机化学学报, 2012, 28, 137.]

    9. [9]

      (9) Li, H. J.; Deng, L. J.; Zhu, G.; Kang, L. P.; Liu, Z. H. Materials Science and Engineering: B 2012, 177, 8. doi: 10.1016/j.mseb.2011.09.012

    10. [10]

      (10) Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47, 3556. doi: 10.1039/c0cc05420h

    11. [11]

      (11) Shan, D.; Cosnier, S.; Mousty, C. Anal. Chem. 2003, 75, 3872. doi: 10.1021/ac030030v

    12. [12]

      (12) Liu, Z. H.; Wang, Z. M.; Yang, X. J.; Ooi, K. Langmuir 2002, 18, 4926. doi: 10.1021/la011677i

    13. [13]

      (13) Nakato, T.; Furumi, Y.; Terao, N.; Okuhara, T. J. Mater. Chem. 2000, 10, 737. doi: 10.1039/a908139i

    14. [14]

      (14) Liu, Z. P.; Ma, R. Z.; Ebina, Y.; Takada, K.; Sasaki, T. Chem. Mater. 2007, 19, 6504. doi: 10.1021/cm7019203

    15. [15]

      (15) Chen, S.; Zhu, J.W.; Wu, X. D.; Han, Q. F.; Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t

    16. [16]

      (16) Tian, Y. ; Yan, J.W.; Liu, X. X.; Xue, R.; Yi, B. L. Acta Phys. -Chim. Sin. 2010, 26, 2151. [田颖, 阎景旺, 刘小雪, 薛荣, 衣宝廉. 物理化学学报, 2010, 26, 2151.] doi: 10.3866/PKU.WHXB201311262

    17. [17]

      (17) Yu, S. P.; Xi, M. J.; Han, K. F.; Wang, Z. M.; Zhu, H. Acta Chim. Sin. 2010, 68, 374. [于书平, 席铭俊, 韩克飞, 汪中明, 朱红. 化学学报, 2010, 68, 374.]

    18. [18]

      (18) Oh, E. J.; Kim, T.W.; Lee, K. M.; Song, M. S.; Jee, A. Y.; Lim, S. T.; Ha, H.W.; Lee, M. Y.; Choy, J. H.; Hwang, S. J. ACS Nano 2010, 4, 4437. doi: 10.1021/nn100286u

    19. [19]

      (19) Lee, K. M.; Lee, Y. R.; Kim, I. Y.; Kim, T.W.; Han, S. Y.; Hwang, S. J. J. Phys. Chem. C 2012, 116, 3311. doi: 10.1021/jp210063c

    20. [20]

      (20) Li, H. J.; Zhu, G.; Yang, Z. P.; Wang, Z. L.; Liu, Z. H. J. Colloid Interface Sci. 2010, 345, 228. doi: 10.1016/j.jcis.2010.01.061

    21. [21]

      (21) Yang, Q. Z.; Zhang, C. G.; Sun, D. J.; Guo, P. Z.; Zhang, J. Acta Chim. Sin. 2002, 60, 1712. [杨亲正, 张春光, 孙德军, 郭培志, 张洁. 化学学报, 2002, 60, 1712.]

    22. [22]

      (22) Kang, H. L.; Huang, G. L.; Ma, S. L.; Bai, Y. X.; Ma, H.; Li, Y. L.; Yang, X. J. J. Phys. Chem. C 2009, 113, 9157.

    23. [23]

      (23) Nethravathi, C.; Viswanath, B.; Sebastian, M.; Rajamathi, M. J. Colloid Interface Sci. 2010, 345, 109. doi: 10.1016/j.jcis.2010.01.047

    24. [24]

      (24) Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J. J. Am. Chem. Soc. 2008, 130, 15938. doi: 10.1021/ja804503f

    25. [25]

      (25) Lokhande, C. D.; Dubal, D. P.; Joo, O. S. Curr. Appl. Phys. 2011, 11, 255. doi: 10.1016/j.cap.2010.12.001

    26. [26]

      (26) Brock, S. L.; Sanabria, M.; Suib, S. L.; Urban, V.; Thiyagarajan, P.; Potter, D. I. J. Phys. Chem. B 1999, 103, 7416. doi: 10.1021/jp991009u

    27. [27]

      (27) Gupta, V.; Gupta, S.; Miura, N. J. Power Sources 2010, 195, 3757. doi: 10.1016/j.jpowsour.2009.12.059

    28. [28]

      (28) Wang, X.; Han, X. D.; Lim, M. F.; Singh, N. D.; Gan, C. L.; Jan, M.; Lee, P. S. J. Phys. Chem. C 2012, 116, 12448. doi: 10.1021/jp3028353

    29. [29]

      (29) Wu, H. Y.; Wang, H.W. Acta Phys. -Chim. Sin. 2013, 29, 1501. [吴红英, 王欢文. 物理化学学报, 2013, 29, 1501.] doi: 10.3866/PKU.WHXB201304241

    30. [30]

      (30) Gao, T.; Fjellvåg, H.; Norby, P. Anal. Chim. Acta 2009, 648, 235. doi: 10.1016/j.aca.2009.06.059

    31. [31]

      (31) Cheng, F. Y.; Zhao, J. Z.; Song, W. N.; Li, C. S.; Ma, H.; Chen, J.; Shen, P.W. Inorg. Chem. 2006, 45, 2038. doi: 10.1021/ic051715b

    32. [32]

      (32) Yang, X. J.; Makita, Y. J.; Liu, Z. H.; Sakane, K.; Ooi, K. Chem. Mater. 2004, 16, 5581. doi: 10.1021/cm049025d

    33. [33]

      (33) Verma, S.; Joshi, H. M.; Jagadale, T.; Chawla, A.; Chandra, R.; Ogale, S. J. Phys. Chem. C 2008, 112, 15106. doi: 10.1021/jp804923t

    34. [34]

      (34) Julien, C. M.; Massot, M.; Poinsignon, C. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2004, 60, 689. doi: 10.1016/S1386-1425(03)00279-8

    35. [35]

      (35) Hu, Z. A.; Xie, Y. L.; Wang, Y. X.; Xie, L. J.; Fu, G. R.; Jin, X. Q.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. J. Phys. Chem. C 2009, 113, 12502. doi: 10.1021/jp8106809

    36. [36]

      (36) Liu, X. H.; Yu, L. Mater. Lett. 2004, 58, 1327. doi: 10.1016/j.matlet.2003.09.054

    37. [37]

      (37) Nethravathi, C.; Rajamathi, J. T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M. Langmuir 2008, 24, 8240. doi: 10.1021/la8000027

    38. [38]

      (38) He, G. Y.; Wang, L.; Chen, H. Q.; Sun, X. Q.; Wang, X. Mater. Lett. 2013, 98, 164. doi: 10.1016/j.matlet.2013.02.035

    39. [39]

      (39) Liu, Z. Q.; Xiao, K.; Xu, Q. Z.; Li, N.; Su, Y. Z.; Wang, H. J.; Chen, S. RSC Advances 2013, 3, 4372. doi: 10.1039/c3ra23084h

    40. [40]

      (40) Huang, L.; Liu, M. Nano Lett. 2013, 13, 3135. doi: 10.1021/nl401086t

    41. [41]

      (41) Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P. Solid State Ionics 2003, 159, 345. doi: 10.1016/S0167-2738(03)00035-3

    42. [42]

      (42) Zhang, S.W.; Peng, C.; Ng, K. C.; Chen, G. Z. Electrochim. Acta 2010, 55, 7447. doi: 10.1016/j.electacta.2010.01.078

    43. [43]

      (43) Liu, M. C.; Kong, L. B.; Lu, C.; Li, X. M.; Luo, Y. C.; Kang, L. ACS Appl. Mater. Interfaces 2012, 4, 4631. doi: 10.1021/am301010u


  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

Metrics
  • PDF Downloads(947)
  • Abstract views(797)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return