Citation:
YANG Fan, ZHANG Jing, WU Wei-Cheng. Hydrogenation Study of Benzene over a Mo2C/γ-Al2O3 Catalyst by In situ IR Spectroscopy[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 943-949.
doi:
10.3866/PKU.WHXB201403213
-
Passivated, reduced passivated, and fresh Mo2C/γ-Al2O3 catalysts were prepared by temperatureprogrammed reactions with a CH4/H2 gas mixture. The results of in situ infrared (IR) analysis revealed that the fresh Mo2C/γ-Al2O3 catalyst displayed the highest level of activity at room temperature, with cyclohexane being detected as the only product. The activity of molybdenum carbide in this reaction was comparable to that of the noble metals. The results from the in situ IR spectra for CO adsorbed onto the fresh Mo2C/γ-Al2O3 catalyst before and after the hydrogenation of benzene showed that Mo2C was active for the hydrotreating processes and Moδ+ (0<δ<2) was the active center for the hydrogenation of benzene. The activities of the three different catalysts for the hydrogenation of benzene were studied, and the results revealed that fresh Mo2C/γ-Al2O3 was the most active catalyst.
-
-
-
[1]
(1) Chen, J. G.; Qi, S. T.; Humbert, M. P.; Menning, C. A.; Zhu, Y. X. Acta Phys. -Chim. Sin. 2010, 26, 869. [陈经广, 齐随涛, Humbert, M. P., Menning, C. A., 朱月香. 物理化学学报, 2010, 26, 869.] doi: 10.3866/PKU.WHXB20000605
-
[2]
(2) Li, H. Q.; Hong, W. S.; Cui, Y. M.; Fan, K. N.; Zhu, L. J. J. Alloy. Compd. 2013, 569, 45. doi: 10.1016/j.jallcom.2013.03.165
-
[3]
(3) Nino, A.; Takahashi, N.; Sugiyama, S.; Taimatsu, H. Int. J. Refract. Met. Hard Mater. 2014, 43, 150. doi: 10.1016/j.ijrmhm.2013.11.016
-
[4]
(4) Barthos, R.; Széchenyi, A.; Koós, Á.; Solymosi, F. Appl. Catal. A 2007, 327, 95. doi: 10.1016/j.apcata.2007.03.040
-
[5]
(5) Zhu, Q. L.; Yang, J.; Ji, S. F.; Wang, J. X.; Wang, H. Q. Journal of Molecular Catalysis 2003, 17, 178. [朱全力, 杨建, 季生福, 王嘉欣, 汪汉卿. 分子催化, 2003, 17, 178.]
-
[6]
(6) Oyama, S. T. Catal. Today 1992, 15, 179. doi: 10.1016/0920-5861(92)80175-M
-
[7]
(7) Cheekatamarla, P. K.; Thomson, W. J. Appl. Catal. A 2005, 287, 176. doi: 10.1016/j.apcata.2005.03.043
-
[8]
(8) Liu, E.; Gao, Y.; Jia, J.; Bai, Y.; Wang, W. Mater. Sci. Eng. A 2014, 592, 201. doi: 10.1016/j.msea.2013.06.078
-
[9]
(9) Kotarba, A.; Poskorz, W.; Sojka, Z. J. Phys. Chem. B 2004, 108, 2885. doi: 10.1021/jp037105j
-
[10]
(10) Costa, P. D.; Manoli, J. M.; Potvin, C. Catal. Today 2005, 107- 108, 520.
-
[11]
(11) Xiao, T. C.; York, A. P. E.; Al-Megren, H.; Williams, H. C. V.; Wang, H. T.; Green, M. L. H. J. Catal. 2001, 202, 100. doi: 10.1006/jcat.2001.3247
-
[12]
(12) Wang, N.; Fang, K. G.; Jiang, D.; Li, D. H.; Sun, Y. H. Catal. Today 2010, 158, 241. doi: 10.1016/j.cattod.2010.03.079
-
[13]
(13) Solymosi, F.; Barthos, R.; Kecskeméti, A. Appl. Catal. A 2008, 350, 30. doi: 10.1016/j.apcata.2008.07.037
-
[14]
(14) Saito, M.; Anderson, R. B. J. Catal. 1980, 63, 438. doi: 10.1016/0021-9517(80)90098-6
-
[15]
(15) Ranhotra, G. S.; Bell, A. T.; Reimer, J.A. J. Catal. 1987, 108, 40. doi: 10.1016/0021-9517(87)90153-9
-
[16]
(16) Nagai, M.; Kurakami, T.; Omi, S. Catal. Today 1998, 45, 235. doi: 10.1016/S0920-5861(98)00221-1
-
[17]
(17) Iglesia, E.; Ribeiro, F. H.; Boudart, M.; Baumgartner, J. E. Catal. Today 1992, 15, 307. doi: 10.1016/0920-5861(92)80181-L
-
[18]
(18) Bouchy, C.; Pham-Huu, C.; Heinrich, B.; Chaumont, C. J. Catal. 2000, 190, 92. doi: 10.1006/jcat.1999.2741
-
[19]
(19) Wu, Z. L.; Li, C.; Ying, P. L.; Wei, Z. B.; Xin, Q. J. Phys. Chem. B 2001, 105, 9183.
-
[20]
(20) Wu, W. C.; Wu, Z. L.; Liang, C. H.; Chen, X.W.; Ying, P. L.; Li, C. J. Phys. Chem. B 2003, 107, 7088. doi: 10.1021/jp027582m
-
[21]
(21) Yang, S.; Li, C.; Xu, J.; Xin, Q. Chem. Commun. 1997, 1247.
-
[22]
(22) Wu, W. C.; Wu, Z. L.; Feng, Z. C.; Ying, P. L.; Li, C. Phys. Chem. Chem. Phys. 2004, 6, 5596. doi: 10.1039/b414360b
-
[23]
(23) Wu, W. C.; Wu, Z. L.; Liang, C. H.; Chen, X.W.; Ying, P. L.; Li, C. Phys. Chem. Chem. Phys. 2004, 6, 5603. doi: 10.1039/b411849a
-
[24]
(24) Zhang, J.; Wu, W. C.; Yan, S.; Zhang, D. China Petroleum Processing and Petrochemical Technology 2010, 12, 43.
-
[25]
(25) Shen, Q.; Fan, Y. J.; Yin, L.; Sun, Z. X. Acta Phys. -Chim. Sin. 2014, 30, 359. [沈琪, 范迎菊, 尹龙, 孙中溪. 物理化学学报, 2014, 30, 359.] doi: 10.3866/PKU.WHXB201312041
-
[26]
(26) Christensen, A. N. J. Cryst. Growth 1976, 33, 58. doi: 10.1016/0022-0248(76)90079-8
-
[27]
(27) Ronchin, L.; Toniolo, L. Appl. Catal. A 2001, 208, 77. doi: 10.1016/S0926-860X(00)00690-6
-
[28]
(28) Prasad, K. H. V.; Prasad, K. B. S.; Mallikarjunan, M, M.; Vaidyeswaran, R. J. Catal. 1983, 84, 65. doi: 10.1016/0021-9517(83)90086-6
-
[29]
(29) Van der Steen, P. J.; Scholten, J. J. F. Appl. Catal. 1990, 58, 291. doi: 10.1016/S0166-9834(00)82297-6
-
[30]
(30) Schoenmaker-Stolk, M. C.; Verwijs, J.W.; Don, J. A.; Scholten, J. J. F. Appl. Catal. 1987, 29, 73. doi: 10.1016/S0166-9834(00)82608-1
-
[1]
-
-
-
[1]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[4]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[5]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[6]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[9]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[10]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[11]
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
-
[12]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[13]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[14]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[16]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[17]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[18]
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
-
[19]
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
-
[20]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[1]
Metrics
- PDF Downloads(649)
- Abstract views(620)
- HTML views(19)