Citation: SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua. QSPR Models of Compound Viscosity Based on Iterative Self-Organizing Data Analysis Technique and Ant Colony Al rithm[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 803-810. doi: 10.3866/PKU.WHXB201403181 shu

QSPR Models of Compound Viscosity Based on Iterative Self-Organizing Data Analysis Technique and Ant Colony Al rithm

  • Received Date: 13 January 2014
    Available Online: 18 March 2014

  • The aim of this study was to construct a quantitative structure-property relationship model to identify relationships between the molecular structures and viscosities of 310 compounds, as well as specific structural factors that could affect the viscosities of the compounds. Using an iterative self-organizing data analysis technique, the sample set was preliminarily classified into two sets, including a training set and a test set. The molecular structure descriptors of 310 compounds were calculated using version 2.1 of the Dra n software and subsequently sifted using an ant colony al rithm (ACO), which resulted in the selection of five parameters. Multiple linear regression (MLR) and the support vector machine (SVM) techniques were then used to establish ACO-MLR and ACO-SVMmodels, respectively. The results showed that the performance of the non-linear ACOSVMmodel (correlation coefficient Rtrain2=0.9013, Rtest2=0.9026) was superior to the linearACO-MLRmodel (Rtrain2=0.7680, Rtest2=0.8725). The correlation coefficients between the experimental and predicted values of the ACOMLR and ACO-SVM models for the test set were 0.934 and 0.950, respectively. The predictive properties of the two models were therefore determined to be satisfying. The application domain of the model was also studied using a Williams graph, which demonstrated that the models established in this study provide effective methods for predicting the viscosities of specific compounds based on their molecular structure.

  • 加载中
    1. [1]

      (1) Baronavski, A. P.; McDonald, J. R. J. Chem. Phys. 1977, 66, 3300. doi: 10.1063/1.434306

    2. [2]

      (2) McKellar, A. The Journal of the Royal Astronomical Society of Canada 1960, 54, 97.

    3. [3]

      (3) Brault, J.W.; Delbouille, L.; Grevesse, N.; Roland, G.; Sauval, A. J.; Testerman, L. Astron. Astrophys.1982, 108, 201.

    4. [4]

      (4) A'Hearn, M. F.; Millis, R. C.; Schleicher, D. O.; Osip, D. J.; Birch, P. V. Icarus 1995, 118, 223. doi: 10.1006/icar.1995.1190

    5. [5]

      (5) Bakker, E. J.; van-Dishoeck, E. F.; Waters, L. B. F. M.; Schoenmaker, T. Astron. Astrophys. 1997, 323, 469.

    6. [6]

      (6) Cecchi-Pestellini, C.; Dalgarno, A. Mon. Not. Roy. Astron. Soc. 2002, 331, L31.

    7. [7]

      (7) Oka, T.; Thorburn, J. A.; McCall, B. J.; Friedman, S. D.; Hobbs, L. M.; Sonnentrucker, P.; Welty, D. E.; York, D. G. Astrophys. J. 2003, 582, 823. doi: 10.1086/apj.2003.582.issue-2

    8. [8]

      (8) Rennick, C. J.; Smith, J. A.; Ashfold, M. N. R.; Orr-Ewing, A. J. Chem. Phys. Lett. 2004, 383, 518. doi: 10.1016/j.cplett.2003.11.089

    9. [9]

      (9) rdillo-Vazquez, F. J.; Albella, J. M. J. Appl. Phys. 2003, 94, 6085. doi: 10.1063/1.1617362

    10. [10]

      (10) Chernicharo, J.; Guelin, M.; Hein, H.; Kahane, C. Astron. Astrophys. 1987, 181, L9.

    11. [11]

      (11) Saito, S.; Kawaguchi, K.; Yamamoto, S.; Ohishi, M.; Suzuki, H.; Kaifu, N. Astrophys. J. 1987, 317, L115.

    12. [12]

      (12) Millar, T. J.; Herbst, E. Astron. Astrophys. 1990, 231, 466.

    13. [13]

      (13) Petrie, S. Mon. Not. Roy. Astron. Soc. 1996, 281, 666. doi: 10.1093/mnras/281.2.666

    14. [14]

      (14) Velusamy, T.; Kuiper, T. B. H.; Langer, W. D. Astrophys. J. 1995, 451, L75.

    15. [15]

      (15) Markwick, A. J.; Millar, T. J.; Charnley, S. B. Astrophys. J. 2000, 535, 256. doi: 10.1086/apj.2000.535.issue-1

    16. [16]

      (16) Hausmann, M.; Homann, B. K. H. Bunsen-Ges. Phys. Chem. 1990, 94, 1308.

    17. [17]

      (17) Harris, S. J.; Shin, H. S.; odwin, D. G. Appl. Phys. Lett. 1995, 66, 891. doi: 10.1063/1.113422

    18. [18]

      (18) Jones, J. M.; Harding, A.W.; Brown, S. D.; Thomas, K. M. Carbon 1995, 33, 833. doi: 10.1016/0008-6223(94)00183-Z

    19. [19]

      (19) Schofield, K. Combust. Flame 2001, 124, 137. doi: 10.1016/S0010-2180(00)00189-9

    20. [20]

      (20) Donnelly, V. M.; Pasternack, L. Chem. Phys. 1979, 39, 427. doi: 10.1016/0301-0104(79)80160-3

    21. [21]

      (21) Pasternack, L.; McDonald, J. R. Chem. Phys. 1979, 43, 173. doi: 10.1016/0301-0104(79)85185-X

    22. [22]

      (22) Reisler, H.; Mangir, M.; Wittig, C. J. Chem. Phys. 1979, 71, 2109. doi: 10.1063/1.438583

    23. [23]

      (23) Reisler, H.; Mangir, M. S.; Wittig, C. J. Chem. Phys. 1980, 73, 2280. doi: 10.1063/1.440377

    24. [24]

      (24) Pasternack, L.; Baronavski, A. P.; McDonald, J. R. J. Chem. Phys. 1980, 73, 3508. doi: 10.1063/1.440508

    25. [25]

      (25) Pasternack, L.; Pitts, W. M.; McDonald, J. R. Chem. Phys. 1981, 57, 19. doi: 10.1016/0301-0104(81)80017-1

    26. [26]

      (26) Pitts, W. M.; Pasternack, L.; McDonald, J. R. Chem. Phys. 1982, 68, 417. doi: 10.1016/0301-0104(82)87050-X

    27. [27]

      (27) Kruse, T.; Roth, P. Int. J. Chem. Kin. 1999, 31, 11.

    28. [28]

      (28) Becker, K. H.; Donner, B.; Dinis, C. M. F.; Geiger, H.; Schmidt, F.; Wiesen, P. Z. Phys. Chem. 2000, 214, 503.

    29. [29]

      (29) Fontijn, A.; Fernandez, A.; Ristanovic, A.; Randall, M. Y.; Jankowiak, J. T. J. Phys. Chem. A 2001, 105, 3182.

    30. [30]

      (30) Ristanovic, A.; Fernandez, A.; Fontijn, A. J. Phys. Chem. A 2002, 106, 8291. doi: 10.1021/jp014553n

    31. [31]

      (31) Huang, C. S.; Zhu, Z. Q.; Xin, Y.; Pei, L. S.; Chen, C. X.; Chen, Y. J. Chem. Phys. 2004, 120, 2225. doi: 10.1063/1.1636692

    32. [32]

      (32) Huang, C. S.; Zhao, D. F.; Pei, L. S.; Chen, C. X.; Chen, Y. Chem. Phys. Lett. 2004, 389, 230. doi: 10.1016/j.cplett.2004.03.080

    33. [33]

      (33) Huang, C. S.; Li, Z. X.; Zhao, D. F.; Xin, Y.; Pei, L. S.; Chen, C. X.; Chen, Y. Chin. Sci. Bull. 2004, 49, 438.

    34. [34]

      (34) Huang, C. S.; Zhu, Z. Q.; Wang, H. L.; Pei, L. S.; Chen, Y. J. Phys. Chem. A 2005, 109, 3921.

    35. [35]

      (35) Daugey, N.; Caubet, P.; Bergeat, A.; Costes, M.; Hickson, K. M. Phys. Chem. Chem. Phys. 2008, 10, 729.

    36. [36]

      (36) Páramo, A.; Canosa, A.; Le Picard, S. D.; Sims, I. R. J. Phys. Chem. A 2006, 110, 3121. doi: 10.1021/jp0544787

    37. [37]

      (37) Páramo, A.; Canosa, A.; Le Picard, S. D.; Sims, I. R. J. Phys. Chem. A 2008, 112, 9591. doi: 10.1021/jp8025336

    38. [38]

      (38) Hu, R. Z.; Zhang, Q.; Chen, Y. J. Chem. Phys. 2010, 132, 164312. doi: 10.1063/1.3400070

    39. [39]

      (39) Hu, R. Z.; Zhang, Q.; Chen, Y. J. Chem. Phys. 2010, 133, 114306. doi: 10.1063/1.3480395

    40. [40]

      (40) Hu, R. Z.; Zhang, Q.; Chen, Y. Acta Phys. -Chim. Sin. 2010, 26, 2619. [胡仁志, 张群, 陈旸. 物理化学学报, 2010, 26, 2619.] doi: 10.3866/PKU.WHXB20100938

    41. [41]

      (41) Matsugi, A.; Kohsuke, S.; Miyoshi, A. J. Phys. Chem. A 2010, 114, 4580. doi: 10.1021/jp1012494

    42. [42]

      (42) Li, N.; Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. Chem. Phys. Lett. 2011, 503, 210. doi: 10.1016/j.cplett.2011.01.029

    43. [43]

      (43) Kolbanovskii, Y. A.; Borisov, Y. A. Mendeleev Commun. 2011, 21, 305. doi: 10.1016/j.mencom.2011.11.003

    44. [44]

      (44) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. Mol. Phys. 2012, 110, 2205. doi: 10.1080/00268976.2012.668969

    45. [45]

      (45) Dangi, B. B.; Maity, S.; Kaiser, R. I.; Mebel, A. M. J. Phys. Chem. A 2013, 117, 11783. doi: 10.1021/jp402700j

    46. [46]

      (46) Hu, R. Z.; Xie, P. H.; Zhang, Q.; Si, F. Q.; Chen, Y. Acta Phys. -Chim. Sin. 2013, 29, 683. [胡仁志, 谢品华, 张群, 司福祺, 陈旸. 物理化学学报, 2013, 29, 683.] doi: 10.3866/PKU.WHXB201302046

    47. [47]

      (47) Huo, R. P.; Zhang, X.; Huang, X. R.; Li, J. L.; Sun, C. C. J. Mol. Model. 2013, 19, 1009. doi: 10.1007/s00894-012-1616-8

    48. [48]

      (48) Yang, X. L.; Xu, G.; Chen, Y.; Chen, C. X. Acta Chim. Sin. 2006, 64, 47. [杨学良, 徐刚, 陈旸, 陈从香. 化学学报, 2006, 64, 47.]

    49. [49]

      (49) Herzberg, G. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules. Van Nostrand: Princeton, 1950.

    50. [50]

      (50) Wang, J. H.; Han, K. L.; He, G. Z.; Li, Z. J. Chem. Phys. Lett. 2003, 368, 139. doi: 10.1016/S0009-2614(02)01810-9

    51. [51]

      (51) Leu, M. T.; Smith, R. H. J. Phys. Chem. 1982, 86, 73. doi: 10.1021/j100390a015

    52. [52]

      (52) Lin, Y. L.; Wang, N. S.; Lee, Y. P. Int. J. Chem. Kinet. 1985, 17, 1201.

    53. [53]

      (53) Lafage, C.; Pauwels, J. F.; Carlier, M.; Devolder, P. J. Chem. Soc. Faraday Trans. 2 1987, 83, 731. doi: 10.1039/f29878300731

    54. [54]

      (54) Wilson, C.; Hirst, D. M. J. Chem. Soc. Faraday Trans. 1994, 90, 3051. doi: 10.1039/ft9949003051

    55. [55]

      (55) Swinnen, S.; Elsamra, R. M. I.; Nguyen, V. S.; Peeters, J.; Carl, S. A.; Nguyen, M. T. Chem. Phys. Lett. 2011, 513, 201. doi: 10.1016/j.cplett.2011.07.098


  • 加载中
    1. [1]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    2. [2]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    3. [3]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    4. [4]

      Yifang Xu Jie Zheng Liangbing Gan . The Conception and Practice of Cultivating Outstanding and Diverse Graduate Students in Basic Disciplines: A Case Study of Graduate Student Cultivation in Chemistry Program at Peking University. University Chemistry, 2024, 39(6): 1-6. doi: 10.3866/PKU.DXHX202404018

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    7. [7]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    8. [8]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(571)
  • Abstract views(542)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return