Citation: YUWEN Li-Hui, XUE Bing, WANG Lian-Hui. Synthesis of High Quality CdTe Quantum Dots in Aqueous Solution Using Multidentate Polymer Ligands under Microwave Irradiation[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 994-1000. doi: 10.3866/PKU.WHXB201403131 shu

Synthesis of High Quality CdTe Quantum Dots in Aqueous Solution Using Multidentate Polymer Ligands under Microwave Irradiation

  • Received Date: 20 December 2013
    Available Online: 13 March 2014

    Fund Project:

  • Quantum dots (QDs) have recently attracted considerable attention due to their unique optical properties and potential applications in biomedicine and optoelectronics. Although the organic synthesis of QDs is popular, aqueous synthesis is also very attractive not only for its low cost, low toxicity, and low reaction temperature, but also because the as-prepared QDs can be used directly for bio-related applications without the requirement for complicated surface modification processes. However, the monodentate ligands typically used for aqueous synthesis have limited binding ability, which can lead to weak colloidal stability and low photoluminescence. To solve these problems, we explored the use of multidentate thiol-containing polymer (PAASH) as a ligand to synthesize CdTe QDs and studied the influence of the ligand on the growth mechanism and photoluminescent properties of the QDs. PAA-SH was synthesized by conjugating cysteamine to poly(acrylic acid) (PAA) in the presence of dicyclohexylcarbodiimide. CdTe QDs of different sizes were prepared in aqueous solutions using PAA-SH as a ligand under microwave irradiation. The resulting PAA-SH-capped CdTe QDs show high photoluminescence quantum yield (PLQY) (up to 75%) without CdS shell coating, which is much better than the CdTe QDs synthesized using monodentate ligands. Furthermore, the hydrodynamic diameter of the PAA-SH-coated CdTe QDs is about 10 nm, and therefore much smaller than the polymer or SiO2 encapsulated QDs. In contrast, benefitting from cooperative binding effect of the multiple thiol groups and the high free energy for the ligand detachment from the QDs surface, PAA-SH-CdTe QDs show high storage stability.

  • 加载中
    1. [1]

      (1) Alivisatos, A. P. Science 1996, 271, 933. doi: 10.1126/science.271.5251.933

    2. [2]

      (2) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. doi: 10.1126/science.1104274

    3. [3]

      (3) Mattoussi, H.; Palui, G.; Na, H. B. Adv. Drug Delivery Rev. 2012, 64, 138.

    4. [4]

      (4) Medintz, I. L.; Uyeda, H. T.; ldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. doi: 10.1038/nmat1390

    5. [5]

      (5) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025

    6. [6]

      (6) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049. doi: 10.1021/ja017002j

    7. [7]

      (7) Zrazhevskiy, P.; Sena, M.; Gao, X. H. Chem. Soc. Rev. 2010, 39, 4326. doi: 10.1039/b915139g

    8. [8]

      (8) Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L. Chem. Rev. 2013, 113, 1904. doi: 10.1021/cr300143v

    9. [9]

      (9) Dubavik, A.; Sezgin, E.; Lesnyak, V.; Gaponik, N.; Schwille, P.; Eychmüller, A.ACS Nano 2012, 6, 2150.

    10. [10]

      (10) Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. J. Am. Chem. Soc. 2005, 127, 3870.

    11. [11]

      (11) Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. J. Am. Chem. Soc. 2007, 129, 13987. doi: 10.1021/ja0749744

    12. [12]

      (12) Stewart, M. H.; Susumu, K.; Mei, B. C.; Medintz, I. L.; Delehanty, J. B.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H. J. Am. Chem. Soc. 2010, 132, 9804. doi: 10.1021/ja102898d

    13. [13]

      (13) Smith, A. M.; Nie, S. J. Am. Chem. Soc. 2008, 130, 11278. doi: 10.1021/ja804306c

    14. [14]

      (14) Liu, W. H.; Greytak, A. B.; Lee, J.; Wong, C. R.; Park, J.; Marshall, L. F.; Jiang, W.; Curtin, P. N.; Ting, A.Y.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. J. Am. Chem. Soc. 2010, 132, 472. doi: 10.1021/ja908137d

    15. [15]

      (15) Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.; Donegan, J. F. J. Phys. Chem. C 2007, 111, 14628. doi: 10.1021/jp072463y

    16. [16]

      (16) Gaponik, N.; Rogach, A. L. Phys. Chem. Chem. Phys. 2010, 12, 8685. doi: 10.1039/c000916d

    17. [17]

      (17) Zhang, H.; Wang, L.; Xiong, H.; Hu, L.; Yang, B.; Li, W. Adv. Mater. 2003, 15, 1712.

    18. [18]

      (18) Li, L.; Qian, H. F.; Ren, J. C. Chem. Commun. 2005, 528.

    19. [19]

      (19) He, Y.; Lu, H. T.; Sai, L. M.; Lai, W.Y.; Fan, Q. L.; Wang, L. H.; Huang, W. J. Phys. Chem. B 2006, 110, 13352. doi: 10.1021/jp061719h

    20. [20]

      (20) Yuwen, L.; Lu, H.; He, Y.; Chen, L.; Hu, M.; Bao, B.; Boey, F.; Zhang, H.; Wang, L. J. Mater. Chem. 2010, 20, 2788. doi: 10.1039/b924579k

    21. [21]

      (21) Liu, L.; Guo, X. H.; Li, Y.; Zhong, X. H. Inorg. Chem. 2010, 49, 3768. doi: 10.1021/ic902469d

    22. [22]

      (22) Jiang, W.; Mardyani, S.; Fischer, H.; Chan, W. C.W. Chem. Mater. 2006, 18, 872. doi: 10.1021/cm051393+

    23. [23]

      (23) He, Y.; Lu, H. T.; Sai, L. M.; Su, Y.Y.; Hu, M.; Fan, C. H.; Huang, W.; Wang, L. H. Adv. Mater. 2008, 20, 3416. doi: 10.1002/adma.200701166

    24. [24]

      (24) Brus, L. J. Phys. Chem. 1986, 90, 2555. doi: 10.1021/j100403a003

    25. [25]

      (25) Yin, Y.; Alivisatos, A. P. Nature 2005, 437, 664. doi: 10.1038/nature04165

    26. [26]

      (26) Kilina, S.; Ivanov, S.; Tretiak, S. J. Am. Chem. Soc. 2009, 131, 7717. doi: 10.1021/ja9005749

    27. [27]

      (27) Shavel, A.; Gaponik, N.; Eychmüller, A. J. Phys. Chem. B 2006, 110, 19280. doi: 10.1021/jp063351u

    28. [28]

      (28) Zou, L.; Gu, Z.; Zhang, N.; Zhang, Y.; Fang, Z.; Zhu, W.; Zhong, X. J. Mater. Chem. 2008, 18, 2807. doi: 10.1039/b801418c

    29. [29]

      (29) Niu, H. J.; Gao, M.Y. Angew. Chem. Int. Edit. 2006, 45, 6462.

    30. [30]

      (30) Guo, J.; Yang, W. L.; Wang, C. C. J. Phys. Chem. B 2005, 109, 17467. doi: 10.1021/jp044770z


  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(556)
  • Abstract views(707)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return