Citation: YUWEN Li-Hui, XUE Bing, WANG Lian-Hui. Synthesis of High Quality CdTe Quantum Dots in Aqueous Solution Using Multidentate Polymer Ligands under Microwave Irradiation[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 994-1000. doi: 10.3866/PKU.WHXB201403131
-
Quantum dots (QDs) have recently attracted considerable attention due to their unique optical properties and potential applications in biomedicine and optoelectronics. Although the organic synthesis of QDs is popular, aqueous synthesis is also very attractive not only for its low cost, low toxicity, and low reaction temperature, but also because the as-prepared QDs can be used directly for bio-related applications without the requirement for complicated surface modification processes. However, the monodentate ligands typically used for aqueous synthesis have limited binding ability, which can lead to weak colloidal stability and low photoluminescence. To solve these problems, we explored the use of multidentate thiol-containing polymer (PAASH) as a ligand to synthesize CdTe QDs and studied the influence of the ligand on the growth mechanism and photoluminescent properties of the QDs. PAA-SH was synthesized by conjugating cysteamine to poly(acrylic acid) (PAA) in the presence of dicyclohexylcarbodiimide. CdTe QDs of different sizes were prepared in aqueous solutions using PAA-SH as a ligand under microwave irradiation. The resulting PAA-SH-capped CdTe QDs show high photoluminescence quantum yield (PLQY) (up to 75%) without CdS shell coating, which is much better than the CdTe QDs synthesized using monodentate ligands. Furthermore, the hydrodynamic diameter of the PAA-SH-coated CdTe QDs is about 10 nm, and therefore much smaller than the polymer or SiO2 encapsulated QDs. In contrast, benefitting from cooperative binding effect of the multiple thiol groups and the high free energy for the ligand detachment from the QDs surface, PAA-SH-CdTe QDs show high storage stability.
-
-
[1]
(1) Alivisatos, A. P. Science 1996, 271, 933. doi: 10.1126/science.271.5251.933
-
[2]
(2) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. doi: 10.1126/science.1104274
-
[3]
(3) Mattoussi, H.; Palui, G.; Na, H. B. Adv. Drug Delivery Rev. 2012, 64, 138.
-
[4]
(4) Medintz, I. L.; Uyeda, H. T.; ldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. doi: 10.1038/nmat1390
-
[5]
(5) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025
-
[6]
(6) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049. doi: 10.1021/ja017002j
-
[7]
(7) Zrazhevskiy, P.; Sena, M.; Gao, X. H. Chem. Soc. Rev. 2010, 39, 4326. doi: 10.1039/b915139g
-
[8]
(8) Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L. Chem. Rev. 2013, 113, 1904. doi: 10.1021/cr300143v
-
[9]
(9) Dubavik, A.; Sezgin, E.; Lesnyak, V.; Gaponik, N.; Schwille, P.; Eychmüller, A.ACS Nano 2012, 6, 2150.
-
[10]
(10) Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. J. Am. Chem. Soc. 2005, 127, 3870.
-
[11]
(11) Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. J. Am. Chem. Soc. 2007, 129, 13987. doi: 10.1021/ja0749744
-
[12]
(12) Stewart, M. H.; Susumu, K.; Mei, B. C.; Medintz, I. L.; Delehanty, J. B.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H. J. Am. Chem. Soc. 2010, 132, 9804. doi: 10.1021/ja102898d
-
[13]
(13) Smith, A. M.; Nie, S. J. Am. Chem. Soc. 2008, 130, 11278. doi: 10.1021/ja804306c
-
[14]
(14) Liu, W. H.; Greytak, A. B.; Lee, J.; Wong, C. R.; Park, J.; Marshall, L. F.; Jiang, W.; Curtin, P. N.; Ting, A.Y.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. J. Am. Chem. Soc. 2010, 132, 472. doi: 10.1021/ja908137d
-
[15]
(15) Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.; Donegan, J. F. J. Phys. Chem. C 2007, 111, 14628. doi: 10.1021/jp072463y
-
[16]
(16) Gaponik, N.; Rogach, A. L. Phys. Chem. Chem. Phys. 2010, 12, 8685. doi: 10.1039/c000916d
-
[17]
(17) Zhang, H.; Wang, L.; Xiong, H.; Hu, L.; Yang, B.; Li, W. Adv. Mater. 2003, 15, 1712.
-
[18]
(18) Li, L.; Qian, H. F.; Ren, J. C. Chem. Commun. 2005, 528.
-
[19]
(19) He, Y.; Lu, H. T.; Sai, L. M.; Lai, W.Y.; Fan, Q. L.; Wang, L. H.; Huang, W. J. Phys. Chem. B 2006, 110, 13352. doi: 10.1021/jp061719h
-
[20]
(20) Yuwen, L.; Lu, H.; He, Y.; Chen, L.; Hu, M.; Bao, B.; Boey, F.; Zhang, H.; Wang, L. J. Mater. Chem. 2010, 20, 2788. doi: 10.1039/b924579k
-
[21]
(21) Liu, L.; Guo, X. H.; Li, Y.; Zhong, X. H. Inorg. Chem. 2010, 49, 3768. doi: 10.1021/ic902469d
-
[22]
(22) Jiang, W.; Mardyani, S.; Fischer, H.; Chan, W. C.W. Chem. Mater. 2006, 18, 872. doi: 10.1021/cm051393+
-
[23]
(23) He, Y.; Lu, H. T.; Sai, L. M.; Su, Y.Y.; Hu, M.; Fan, C. H.; Huang, W.; Wang, L. H. Adv. Mater. 2008, 20, 3416. doi: 10.1002/adma.200701166
-
[24]
(24) Brus, L. J. Phys. Chem. 1986, 90, 2555. doi: 10.1021/j100403a003
-
[25]
(25) Yin, Y.; Alivisatos, A. P. Nature 2005, 437, 664. doi: 10.1038/nature04165
-
[26]
(26) Kilina, S.; Ivanov, S.; Tretiak, S. J. Am. Chem. Soc. 2009, 131, 7717. doi: 10.1021/ja9005749
-
[27]
(27) Shavel, A.; Gaponik, N.; Eychmüller, A. J. Phys. Chem. B 2006, 110, 19280. doi: 10.1021/jp063351u
-
[28]
(28) Zou, L.; Gu, Z.; Zhang, N.; Zhang, Y.; Fang, Z.; Zhu, W.; Zhong, X. J. Mater. Chem. 2008, 18, 2807. doi: 10.1039/b801418c
-
[29]
(29) Niu, H. J.; Gao, M.Y. Angew. Chem. Int. Edit. 2006, 45, 6462.
-
[30]
(30) Guo, J.; Yang, W. L.; Wang, C. C. J. Phys. Chem. B 2005, 109, 17467. doi: 10.1021/jp044770z
-
[1]
-
-
[1]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[4]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[5]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[6]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[7]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[8]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[9]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[10]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[11]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[12]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[13]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[14]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[15]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[16]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[17]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[18]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[19]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[20]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[1]
Metrics
- PDF Downloads(556)
- Abstract views(707)
- HTML views(6)