Citation:
YUAN Shu-Wei, LÜ Rong, YU An-Chi. Photoisomerization Kinetics of IR125 and HDITCP in Ionic Liquids with Different Cation Alkyl Chain Lengths[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 987-993.
doi:
10.3866/PKU.WHXB201403112
-
The photoisomerization kinetics of IR125 and HDITCP in ionic liquids with different cation alkyl chain lengths were investigated by measuring their fluorescence lifetimes and quantum yields using steady-state absorption and fluorescence spectroscopies, and time-correlated single-photon counting experiments. It was found that the photoisomerization rate constants for IR125 and HDITCP in all the selected ionic liquids were almost identical and did not change with increasing ionic liquid viscosity. A comparison of the photoisomerization rate constants of IR125 and HDITCP in isoviscous aqueous glycerol solutions with those in ionic liquids showed that the photoisomerization energy barriers of IR125 and HDITCP in ionic liquids were about 2 kJ·mol-1 higher than those in the isoviscous aqueous glycerol solutions, indicating that specific interactions between IR125 or HDITCP and the ionic liquid restrain their respective photoisomerization processes in highly viscous ionic liquids.
-
-
-
[1]
(1) Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248
-
[2]
(2) Coleman, D.; Gather od, N. Chem. Soc. Rev. 2010, 39, 600. doi: 10.1039/b817717c
-
[3]
(3) Petkovic, M.; Seddon, K. R.; Rebelo, L. P.; Silva Pereira, C. Chem. Soc. Rev. 2011, 40, 1383. doi: 10.1039/c004968a
-
[4]
(4) Jessop, P. G.; Jessop, D. A.; Fu, D.; Phan, L. Green Chem. 2012, 14, 1245. doi: 10.1039/c2gc16670d
-
[5]
(5) Wellens, S.; Thijs, B.; Binnemans, K. Green Chem. 2012, 14, 1657. doi: 10.1039/c2gc35246j
-
[6]
(6) Welton, T. Green Chem. 2011, 13, 225. doi: 10.1039/c0gc90047h
-
[7]
(7) Wilkes, J. S. Green Chem. 2002, 4, 73. doi: 10.1039/b110838g
-
[8]
(8) Li, H.; Bhadury, P. S.; Song, B.; Yang, S. RSC Adv. 2012, 2, 12525. doi: 10.1039/c2ra21310a
-
[9]
(9) Arzhantsev, S.; Ito, N.; Heitz, M.; Maroncelli, M. Chem. Phys. Lett. 2003, 381, 278. doi: 10.1016/j.cplett.2003.09.131
-
[10]
(10) Zhang, X. X.; Liang, M.; Ernsting, N. P.; Maroncelli, M. J. Phys. Chem. B 2013, 117, 4291. doi: 10.1021/jp305430a
-
[11]
(11) Ito, N.; Arzhantsev, S.; Maroncelli, M. Chem. Phys. Lett. 2004, 396, 83. doi: 10.1016/j.cplett.2004.08.018
-
[12]
(12) Gangamallaiah, V.; Dutt, G. B. J. Phys. Chem. B 2013, 117, 12261. doi: 10.1021/jp4078079
-
[13]
(13) Gangamallaiah, V.; Dutt, G. B. J. Chem. Phys. 2011, 135, 174505. doi: 10.1063/1.3656694
-
[14]
(14) Mali, K. S.; Dutt, G. B.; Mukherjee, T. J. Chem. Phys. 2008, 128, 124515. doi: 10.1063/1.2883954
-
[15]
(15) Koch, M.; Rosspeintner, A.; Angulo, G.; Vauthey, E. J. Am. Chem. Soc. 2012, 134, 3729. doi: 10.1021/ja208265x
-
[16]
(16) Li, X.; Liang, M.; Chakraborty, A.; Kondo, M.; Maroncelli, M. J. Phys. Chem. B 2011, 115, 6592. doi: 10.1021/jp200339e
-
[17]
(17) Rodrigues, C. A.; Graca, C.; Macoas, E.; Fedorov, A.; Afonso, C. A.; Martinho, J. M. J. Phys. Chem. B 2013, 117, 14108. doi: 10.1021/jp408616r
-
[18]
(18) Hayaki, S.; Kimura, Y.; Sato, H. J. Phys. Chem. B 2013, 117, 6759. doi: 10.1021/jp311883f
-
[19]
(19) Bhattacharya, B.; Samanta, A. J. Phys. Chem. B 2008, 112, 10101. doi: 10.1021/jp802930h
-
[20]
(20) Behar, D.; nzalez, C.; Neta, P. J. Phys. Chem. A 2001, 105, 7607. doi: 10.1021/jp011405o
-
[21]
(21) Grodkowski, J.; Neta, P. J. Phys. Chem. A 2002, 106, 5468. doi: 10.1021/jp020165p
-
[22]
(22) Brooks, C.; Doherty, A. P. J. Phys. Chem. B 2005, 109, 6276. doi: 10.1021/jp040554e
-
[23]
(23) Song, L.; Elsayed, M. A.; Lanyi, J. K. Science 1993, 261, 891. doi: 10.1126/science.261.5123.891
-
[24]
(24) Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A. Science 1998, 279, 1886. doi: 10.1126/science.279.5358.1886
-
[25]
(25) Hayakawa, R.; Higashiguchi, K.; Matsuda, K.; Chikyow, T.; Wakayama, Y. ACS Appl. Mater. Interfaces 2013, 5, 11371. doi: 10.1021/am403616m
-
[26]
(26) ulet-Hanssens, A.; Barrett, C. J. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3058. doi: 10.1002/pola.26735
-
[27]
(27) Zhang, Z.; Wang, Y.; Yan, F.; Peng, D.; Ma, Z. Chin. J. Chem. 2011, 29, 153. doi: 10.1002/cjoc.v29.1
-
[28]
(28) Sundstroem, V.; Glllbro, T. J. Phys. Chem. 1982, 86, 1788. doi: 10.1021/j100207a012
-
[29]
(29) Velsko, S. P.; Waldeck, D. H.; Fleming, G. R. J. Chem. Phys. 1983, 78, 249. doi: 10.1063/1.444549
-
[30]
(30) Sitzmann, E. V.; Eisenthal, K. B. J. Phys. Chem. 1988, 92, 4579. doi: 10.1021/j100327a004
-
[31]
(31) Vaveliuk, P.; Scaffardi, L. B.; Duchowicz, R. J. Phys. Chem. 1996, 100, 11630. doi: 10.1021/jp953618h
-
[32]
(32) Xu, Q. H.; Fleming, G. R. J. Phys. Chem. A 2001, 105, 10187. doi: 10.1021/jp011924r
-
[33]
(33) Adamson, B. D.; Coughlan, N. J.; da Silva, G.; Bieske, E. J. J. Phys. Chem. A 2013, 117, 13319.
-
[34]
(34) Datta, A.; Mandal, D.; Pal, S. K.; Bhattacharyya, K. Chem. Phys. Lett. 1997, 278, 77. doi: 10.1016/S0009-2614(97)00979-2
-
[35]
(35) Pal, S. K.; Datta, A.; Mandal, D.; Bhattacharyya, K. Chem. Phys. Lett. 1998, 288, 793. doi: 10.1016/S0009-2614(98)00353-4
-
[36]
(36) Heilemann, M.; Margeat, E.; Kasper, R.; Sauer, M.; Tinnefeld, P. J. Am. Chem. Soc. 2005, 127, 3801. doi: 10.1021/ja044686x
-
[37]
(37) Jia, K.; Wan, Y.; Xia, A.; Li, S.; ng, F. J. Phys. Chem. A 2007, 111, 1593. doi: 10.1021/jp067843i
-
[38]
(38) Redmond, R.W.; Kochevar, I. E.; Krieg, M.; Smith, G.; McGimpsey, W. G. J. Phys. Chem. A 1997, 101, 2773. doi: 10.1021/jp963001f
-
[39]
(39) Lee, H.; Berezin, M. Y.; Henary, M.; Strekowski, L.; Achilefu, S. J. Photochem. Photobiol. A: Chem. 2008, 200, 438. doi: 10.1016/j.jphotochem.2008.09.008
-
[40]
(40) Dempsey, G.; Bates, M.; Kowtoniuk, W. E.; Liu, D. R.; Tsien, R. Y. J. Am. Chem. Soc. 2009, 131, 18192. doi: 10.1021/ja904588g
-
[41]
(41) Jee, A. Y.; Park, S.; Lee, M. Phys. Chem. Chem. Phys. 2011, 13, 15227. doi: 10.1039/c1cp20835g
-
[42]
(42) Wei, Z.; Nakamura, T.; Takeuchi, S.; Tahara, T. J. Am. Chem. Soc. 2011, 133, 8205. doi: 10.1021/ja110716b
-
[43]
(43) Dunkelberger, A. D.; Kieda, R. D.; Shin, J. Y.; Rossi Paccani, R.; Fusi, S.; Olivucci, M.; Crim, F. F. J. Phys. Chem. A 2012, 116, 3527. doi: 10.1021/jp300153a
-
[44]
(44) Wurth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch-Genger, U. Anal. Chem. 2012, 84, 1345. doi: 10.1021/ac2021954
-
[45]
(45) Tatikolov, A. S.; Akimkin, T. M.; Pronkin, P. G.; Yarmoluk, S. M. Chem. Phys. Lett. 2013, 556, 287. doi: 10.1016/j.cplett.2012.11.097
-
[46]
(46) Ghosh, S.; Mandal, S.; Banerjee, C.; Rao, V. G.; Sarkar, N. J. Phys. Chem. B 2012, 116, 9482. doi: 10.1021/jp305095n
-
[47]
(47) Ivanov, D. A.; Petrov, N. K.; Klimchuk, O.; Billard, I. Chem. Phys. Lett. 2012, 551, 111. doi: 10.1016/j.cplett.2012.09.024
-
[48]
(48) Tamura, H.; Arai, T. Chem. Lett. 2011, 40, 594. doi: 10.1246/cl.2011.594
-
[49]
(49) Asaka, T.; Akai, N.; Kawai, A.; Shibuya, K. J. Photochem. Photobiol. A: Chem. 2010, 209, 12. doi: 10.1016/j.jphotochem.2009.10.002
-
[50]
(50) Soper, S. A.; Mattingly, Q. L. J. Am. Chem. Soc. 1994, 116, 3744. doi: 10.1021/ja00088a010
-
[51]
(51) Yu, A.; Tolbert, C. A.; Farrow, D. A.; Jonas, D. M. J. Phys. Chem. A 2002, 106, 9407. doi: 10.1021/jp0205867
-
[1]
-
-
-
[1]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[2]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[3]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[4]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[5]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[6]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[7]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[8]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[9]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[10]
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
-
[11]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[12]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[13]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[14]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[15]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[16]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[17]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[18]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
-
[19]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[20]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[1]
Metrics
- PDF Downloads(449)
- Abstract views(601)
- HTML views(22)