Citation: AO Ping, XU Xiang-Sheng, XU Xiao-Xiao, LI Jia-Heng, YAN Xin-Huan. Low-Temperature Total Oxidation of Toluene over Assembled Pt/TiO2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 950-956. doi: 10.3866/PKU.WHXB201403111 shu

Low-Temperature Total Oxidation of Toluene over Assembled Pt/TiO2 Catalyst

  • Received Date: 6 December 2013
    Available Online: 11 March 2014

    Fund Project:

  • A highly active assembled Pt/TiO2 catalyst (Pt/TiO2-AS) was synthesized using a simple directadsorption method, in which uniformly dispersed Pt nanoparticles were directly loaded on a TiO2 support. Compared with Pt/TiO2 produced by wet impregnation (Pt/TiO2-WI), the Pt/TiO2-AS catalyst exhibited higher activity in the total oxidation of toluene, with a toluene conversion to CO2 and H2O of 100% at 150 ℃. The high activity remained even at high toluene concentrations and gas hourly space velocities. The properties of the synthesized catalysts were characterized using X- ray diffraction (XRD), N2 adsorption- desorption (Brunauer-Emmett-Teller (BET) method), transmission electron microscopy (TEM), X- ray photoelectron spectroscopy (XPS), temperature-programmed reduction of H2 (H2-TPR), and Fourier-transform infrared (FTIR) spectroscopy. The results showed that the Pt/TiO2-AS crystallites were smaller than those of Pt/TiO2-WI, with fine dispersion, greater Pt0 exposure on the support surface, and more active Ti―O bands, giving more oxygen vacancies and reactive oxygen species. The valence states of the active centers changed significantly (Pt0→Ptδ+) during stability tests; this is the main reason for the deactivation of the Pt/TiO2-AS catalyst.

  • 加载中
    1. [1]

      (1) Kim, S. C.; Shim, W. G. J. Hazard. Mater. 2008, 154, 310. doi: 10.1016/j.jhazmat.2007.10.027

    2. [2]

      (2) Yu, C.W. F.; Kim, J. T. Indoor Built Environ. 2012, 21, 137. doi: 10.1177/1420326X11424330

    3. [3]

      (3) Wang, H. L.; Nie, L.; Li, J.; Wang, Y. F.; Wang, G.; Wang, J. H.; Hao, Z. P. Chin. Sci. Bull. 2012, 57, 1739. [王海林, 聂磊, 李靖, 王宇飞, 王刚, 王俊慧, 郝郑平. 科学通报, 2012, 57, 1739.] doi: 10.1007/s11434-012-5028-z

    4. [4]

      (4) Zhang, C. B.; Liu, F. D.; Zhai, Y. P.; Ariga, H.; Yi, N.; Liu, Y. C.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Angew. Chem. Int. Edit. 2012, 51, 9628. doi: 10.1002/anie.v51.38

    5. [5]

      (5) Li, W. B.; ng, H. Acta Phys. -Chim. Sin. 2010, 26, 885. [黎维彬, 龚浩. 物理化学学报, 2010, 26, 885.] doi: 10.3866/PKU.WHXB20100436

    6. [6]

      (6) Everaert, K.; Baeyens, J. J. Hazard. Mater. 2004, 109, 113. doi: 10.1016/j.jhazmat.2004.03.019

    7. [7]

      (7) Takeguchi, T.; Aoyama, S.; Ueda, J.; Kikuchi, R.; Eguchi, K. Top. Catal. 2003, 23, 159. doi: 10.1023/A:1024888724146

    8. [8]

      (8) Zhao, F. Z.; Zeng, P. H.; Ji, S. F.; Yang, X.; Li, C. Y. Acta Phys. -Chim. Sin. 2010, 26, 3285. [赵福真, 曾鹏辉, 季生福, 杨肖, 李成岳. 物理化学学报, 2010, 26, 3285.] doi: 10.3866/PKU.WHXB20101137

    9. [9]

      (9) Varela-Gandia, F. J.; Berenguer-Murcia, A.; Lozano-Castello, D.; Cazorla-Amoros, D.; Sellick, D. R.; Taylor, S. H. Catal. Sci. Technol. 2013, 3, 2708. doi: 10.1039/c3cy00323j

    10. [10]

      (10) Scire, S.; Minico, S.; Crisafulli, C.; Satriano, C.; Pistone, A. Appl. Catal. B 2003, 40, 43. doi: 10.1016/S0926-3373(02)00127-3

    11. [11]

      (11) Papaefthimiou, P.; Ioannides, T.; Verykios, X. E. Appl. Catal. B 1998, 15, 75. doi: 10.1016/S0926-3373(97)00038-6

    12. [12]

      (12) Xiong, D. S.; Qin, F.; Xu, H. L.; Shen, W. Acta Chim. Sin. 2012, 70, 39. [熊德胜, 秦枫, 徐华龙, 沈伟. 化学学报, 2012, 70, 39.]

    13. [13]

      (13) Aguero, F. N.; Barbero, B. P.; Gambaro, L.; Cadus, L. E. Appl. Catal. B 2009, 91, 108. doi: 10.1016/j.apcatb.2009.05.012

    14. [14]

      (14) Barbero, B. P.; Costa-Almeida, L.; Sanz, O.; Morales, M. R.; Cadus, L. E.; Montes, M. J. Chem. Eng. 2008, 139, 430. doi: 10.1016/j.cej.2007.12.033

    15. [15]

      (15) Wu, X. Q.; Zong, R. L.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 437. [吴小琴, 宗瑞隆, 朱永法. 物理化学学报, 2012, 28, 437.] doi: 10.3866/PKU.WHXB201112082

    16. [16]

      (16) Kim, S. C.; Shim, W. G.; Lee, M. S.; Jung, S. C.; Park, Y. K. J. Nanosci. Nanotechnol. 2011, 11, 7347. doi: 10.1166/jnn.2011.4768

    17. [17]

      (17) Chen, C. Y.; Zhu, J.; Chen, F.; Meng, X. J.; Zheng, X. M.; Gao, X. H.; Xiao, F. S. Appl. Catal. B 2013, 140, 199.

    18. [18]

      (18) Ye, Q.; Hu, F. F.; Yan, L. N.; Wang, J.; Cheng, S. Y.; Kang, T. F. Acta Phys. -Chim. Sin. 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872.] doi: 10.3866/PKU.WHXB20112872

    19. [19]

      (19) Ribeiro, F.; Silva, J. M.; Silva, E.; Vaz, M. F.; Oliveira, F. A. C. Catal. Today 2011, 176, 93. doi: 10.1016/j.cattod.2011.02.007

    20. [20]

      (20) Hosseini, M.; Barakat, T.; Cousin, R.; Aboukais, A.; Su, B. L.; DeWeireld, G.; Siffert, S. Appl. Catal. B 2012, 111, 218.

    21. [21]

      (21) Nadgeri, J. M.; Telkar, M. M.; Rode, C. V. Catal. Commun. 2008, 9, 441. doi: 10.1016/j.catcom.2007.07.023

    22. [22]

      (22) Masui, T.; Imadzu, H.; Matsuyama, N.; Imanaka, N. J. Hazard. Mater. 2010, 176, 1106. doi: 10.1016/j.jhazmat.2009.11.108

    23. [23]

      (23) Mao, J. Z.; Yan, X. H.; Gu, H. Z.; Jiang, L. C. Chin. J. Catal. 2009, 30, 182. [毛建忠, 严新焕, 顾辉子, 江玲超. 催化学报, 2009, 30, 182. ] doi: 10.1016/S1872-2067(08)60095-9

    24. [24]

      (24) Zhao, L.; Xu, X. S.; Zhang, K. C.; Yan, X. H. Acta Phys. -Chim. Sin. 2012, 28, 923. [赵磊, 许响生, 张凯超, 严新焕. 物理化学学报, 2012, 28, 923.] doi: 10.3866/PKU.WHXB201202081

    25. [25]

      (25) Yang, F.; Xu, X. S.; Gu, H. Z.; Chen, A. A.; Yan, X. H. Acta Phys. -Chim. Sin. 2012, 28, 2141. [杨芳, 许响生, 顾辉子, 陈傲昂, 严新焕. 物理化学学报, 2012, 28, 2141.] doi: 10.3866/PKU.WHXB201206201

    26. [26]

      (26) Xu, X. S.; Li, X. Q.; Cu, H. Z.; Huang, Z. B.; Yan, X. H. Appl. Catal. A 2012, 429, 17.

    27. [27]

      (27) Ould-Ely, T.; Pan, C.; Amiens, C.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M. J.; Mosset, A.; Respaud, M.; Broto, J. M. J. Phys. Chem. B 2000, 104, 695. doi: 10.1021/jp9924427

    28. [28]

      (28) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.] doi: 10.3866/PKU.WHXB20100815

    29. [29]

      (29) Di, L. B.; Xu, Z. J.; Wang, K.; Zhang, X. L. Catal. Today 2013, 211, 109. doi: 10.1016/j.cattod.2013.03.025

    30. [30]

      (30) Li, N.; Chen, Q. Y.; Luo, L. F.; Huang, W. X.; Luo, M. F.; Hu, G. S.; Lu, J. Q. Appl. Catal. B 2013, 142, 523.

    31. [31]

      (31) Ismail, A. A.; Bahnemann, D.W. J. Phys. Chem. C 2011, 115, 5784. doi: 10.1021/jp110959b

    32. [32]

      (32) Li, L.; Xu, B. Q. Acta Phys. -Chim. Sin. 2005, 21, 1132. [李莉, 徐柏庆. 物理化学学报, 2005, 21, 1132.] doi: 10.3866/PKU.WHXB20051014

    33. [33]

      (33) Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R. J. Power Sources 2012, 215, 53. doi: 10.1016/j.jpowsour.2012.04.061

    34. [34]

      (34) Bonneviot, L.; Haller, G. L. J. Catal. 1991, 130, 359. doi: 10.1016/0021-9517(91)90120-S

    35. [35]

      (35) Wang, J. L.; Wang, K. C.; Cao, H. Y.; Chen, Y. D.; Liu, Z. M.; Zhu, Y.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2009, 25, 689. [王健礼, 王康才, 曹红岩, 陈永东, 刘志敏, 朱艺, 龚茂初, 陈耀强. 物理化学学报, 2009, 25, 689.] doi: 10.3866/PKU.WHXB200904211

    36. [36]

      (36) Barakat, T.; Finne, G.; Franco, M.; Cousin, R.; Giraudon, J. M.; Lamonier, J. F.; Thomas, D.; Decroly, A.; DeWeireld, G.; Siffert, S. Adv. Innov. Mater. Appl. 2011, 324, 162.

    37. [37]

      (37) Einaga, H.; Teraoka, Y. Res. Chem. Intermediat. 2008, 34, 617. doi: 10.1163/156856708784795536

    38. [38]

      (38) Panagiotopoulou, P.; Kondarides, D. I. J. Catal. 2008, 260, 141. doi: 10.1016/j.jcat.2008.09.014

    39. [39]

      (39) Benvenutti, E. V.; Franken, L.; Moro, C. C.; Davanzo, C. U. Langmuir 1999, 15, 8140. doi: 10.1021/la990195s


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(627)
  • Abstract views(711)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return