Citation: CAO Xu-Long, LI Jing, YANG Yong, ZHANG Ji-Chao, ZHANG Lei, ZHANG Lu, ZHAO Sui. Effects of Surfactants on Interfacial Shear Rheological Properties of Polymers for Enhanced Oil Recovery[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 908-916. doi: 10.3866/PKU.WHXB201403073 shu

Effects of Surfactants on Interfacial Shear Rheological Properties of Polymers for Enhanced Oil Recovery

  • Received Date: 16 December 2013
    Available Online: 7 March 2014

    Fund Project:

  • The effects of surfactants, namely sodium dodecylbenzenesulfonate (SDBS) and hexadecyltrimethylammonium bromide (CTAB), on the interfacial shear rheological properties of partially hydrolyzed polyacrylamide (PHPAM) and hydrophobically modified polyacrylamide (HMPAM) solutions, which are used in oilfields, were studied using a biconical method. The experimental results show that the interfacial shear complex modulus of HMPAM is significantly higher than that of PHPAM, because an interfacial net structure can be formed by HMPAM molecules through hydrophobic interactions. The SDBS and CTAB molecules can form interfacial aggregates with hydrophobic blocks of HMPAM and destroy the interfacial net structure, which results in a significant decrease in the shear modulus with increasing surfactant concentration. At the same time, the properties of the interfacial film change from viscous to elastic. At low SDBS concentrations, the mixed adsorption film formed by PHPAM and a few SDBS molecules has enhanced strength. However, SDBS molecules can displace PHPAM molecules at the interface and weaken the film at higher surfactant concentrations. The cationic surfactant CTAB neutralizes the negative charge on PHPAM, leading to partial curling of the polymer chain, which decreases the film strength. Relaxation measurements confirmed our mechanism involving destruction of the interfacial net structure of HMPAM by the surfactant.

  • 加载中
    1. [1]

      (1) Taylor, K. C.; Nasr-El-Din, H. A. J. Petrol. Sci. Eng. 1998, 19, 265. doi: 10.1016/S0920-4105(97)00048-X

    2. [2]

      (2) Taylor, K. C.; Nasr-El-Din, H. A. Colloids Surf. A 1998, 108, 49.

    3. [3]

      (3) Shen, P. P.; Yu, J. Y. Fundamental Study on Extensively Enhanced Petroleum Recovery; Petroleum Industry Press: Beijing, 2001; pp 38-44. [沈平平, 俞稼镛. 大幅度提高石油采收率的基础研究. 北京: 石油工业出版社, 2001: 38-44.]

    4. [4]

      (4) Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A. Prog. Polym. Sci. 2011, 36 (11), 1558. doi: 10.1016/j.progpolymsci.2011.05.006

    5. [5]

      (5) Sun, H. Q.; Zhang, L.; Li, Z. Q.; Zhang, L.; Luo, L.; Zhao, S. Soft Matter 2011, 7 (17), 7601. doi: 10.1039/c1sm05234a

    6. [6]

      (6) Wierenga, P. A.; Kosters, H.; Egmond, M. R.; Voragen, A. G. J.; de Jongh, H. H. J. Adv. Colloid Interface Sci. 2006, 119 (2-3), 131. doi: 10.1016/j.cis.2005.11.001

    7. [7]

      (7) Kotsmar, C.; Pradines, V.; Alahverdjieva, V. S.; Aksenenko, E. V.; Fainerman, V. B.; Kovalchuk, V. I.; Kraegel, J.; Leser, M. E.; Noskov, B. A.; Miller, R. Adv. Colloid Interface Sci. 2009, 150 (1), 41.

    8. [8]

      (8) Miller, R.; Ferri, J. K.; Javadi, A.; Kragel, J.; Mucic, N.; Wustneck, R. Colloid Polym. Sci. 2010, 288, 937. doi: 10.1007/s00396-010-2227-5

    9. [9]

      (9) Kraegel, J.; Derkatch, S. R. Curr. Opin. Colloid Interfaces Sci. 2010, 15 (4), 246. doi: 10.1016/j.cocis.2010.02.001

    10. [10]

      (10) Derkach, S. R.; Kragel, J.; Miller, R. Colloid J. 2009, 71 (1), 1. doi: 10.1134/S1061933X09010013

    11. [11]

      (11) Wang, Y. Y.; Dai, Y. H.; Zhang, L.; Tang, K.; Luo, L.; ng, Q. T.; Zhao, S.; Li, M. Y.; Wang, E. J.; Yu, J. Y. J. Colloid Interface Sci. 2004, 280, 76. doi: 10.1016/j.jcis.2004.07.016

    12. [12]

      (12) Luo, L.; Wang, D. X.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Disper. Sci. Technol. 2007, 28 (2), 263. doi: 10.1080/01932690601059594

    13. [13]

      (13) Wang, D. X.; Luo, L.; Zhang, L.; Zhao, S.; Wang, L.; ng, Q. T.; Liao, L.; Chu, Y. P.; Yu, J. Y. J. Disper. Sci. Technol. 2007, 28 (5), 725. doi: 10.1080/01932690701341843

    14. [14]

      (14) Zhang, L.; Wang, X. C.; Yan, F.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci. 2008, 286, 1291. doi: 10.1007/s00396-008-1894-y

    15. [15]

      (15) Cui, X. H.; Zhang, L.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloids Surf. A 2010, 369, 106. doi: 10.1016/j.colsurfa.2010.08.012

    16. [16]

      (16) Xin, X.; Xu, G. Y.; Ge, L. L.; Chen, Y. J.; Wang, Y.; Zhang, X. H.; Guo, R. J. Disper. Sci. Technol. 2010, 31 (6), 727.

    17. [17]

      (17) Ao, M.; Xu, G.; Kang, W.; Meng, L.; ng, H.; Zhou, T. Soft Matter 2011, 7 (3), 1199.

    18. [18]

      (18) Lin, M. Q.; Wang, H.; Tian, D.; Mao, L. T.; Zong, H.; Li, M. Y. Petrochemical Technology 2011, 40 (7), 753. [林梅钦, 王浩, 田丹, 毛雷霆, 宗华, 李明远. 石油化工, 2011, 40 (7), 753.]

    19. [19]

      (19) Guo, Y. M.; Li, M. Y.; He, Z. H.; Lin, M. Q. Appl. Chem. Ind. 2009, 38 (9), 1300. [郭亚梅, 李明远, 贺辉宗, 林梅钦. 应用化工, 2009, 38 (9), 1300.]

    20. [20]

      (20) Kragel, J.; Derkatch, S. R.; Miller, R. Adv. Colloid Interface Sci. 2008, 144 (1-2), 38. doi: 10.1016/j.cis.2008.08.010

    21. [21]

      (21) Maestro, A.; Bonales, L. J.; Ritacco, H.; Fischer, T. M.; Rubio, R. G.; Ortega, F. Soft Matter 2011, 7 (17), 7761. doi: 10.1039/c1sm05225j

    22. [22]

      (22) Maas, M.; Bodnar, P. M.; Hess, U.; Treccani, L.; Rezwan, K. J. Colloid Interface Sci. 2013, 407, 529.

    23. [23]

      (23) Wang, Y.; Dai, Y.; Zhang, L.; Luo, L.; Zhao, S.; Li, M.; Wang, E.; Yu, J. Macromolecules 2004, 37, 2930. doi: 10.1021/ma049923v

    24. [24]

      (24) Zhu, Y.W.; Song, X.W.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Chem. J. Chin. Uinv. 2010, 31 (12), 2445. [祝仰文, 宋新旺, 罗澜, 张路, 赵濉, 俞稼镛. 高等学校化学学报, 2010, 31 (12), 2445.]

    25. [25]

      (25) Zong, H.; Wang, L.; Fang, H. B.; Mao, L. T.; Wang, Y. H.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin. 2010, 26 (11), 2982. [宗华, 王磊, 方洪波, 毛雷霆, 王宇慧, 张路, 赵濉, 俞稼镛. 物理化学学报, 2010, 26 (11), 2982.] doi: 10.3866/PKU.WHXB20101105


  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    15. [15]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    16. [16]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(620)
  • Abstract views(623)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return