Citation:
WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 923-931.
doi:
10.3866/PKU.WHXB201403051
-
A series of Cu/ZrO2/CNTs-NH2 catalysts with various chromium dopings were prepared using a coprecipitation method for the synthesis of methanol by the hydrogenation of CO2. The impact of the addition of chromium on the catalytic performance of the Cu/ZrO2/CNTs-NH2 catalyst was investigated in a fixed-bed plug flow reactor. When the chromium loading was set to 1% of the total amount of Cu2+ and Zr4+, the methanol yield increased to a maximum of 7.78% (reaction conditions: 3.0 MPa, 260 ℃, V(H2):V(CO2):V(N2)=69:23:8 and gaseous hourly space velocity (GHSV)=3600 mL·h-1·g-1). The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), temperature-programmed desorption of H2 (H2-TPD), X-ray photoelectron spectroscopy (XPS), temperature- programmed desorption of CO2 (CO2-TPD), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of these analyses indicated that the introduction of chromium reduced the size of the Cu nanoparticles, enhanced the dispersion of the Cu species, inhibited the phase transformation and sintering of ZrO2, increased the specific surface area, enhanced the amount of CO2 adsorbed, and promoted the conversion of weakly adsorbed CO2 species to strongly adsorbed CO2 species. Taken together, these factors lead to a high methanol yield. However, when the chromium loading was greater than 1%, the amount Cu and Zr on the surface, as well as the size of the Cu nanoparticle reduced considerably, which led to a significant reduction in the adsorption of CO2 species. This effect also facilitated the formation of strongly adsorbed CO2 species, leading to lower methanol yields.
-
Keywords:
-
CNTs-NH2
, - Chromium,
- Copper,
- Zirconia,
- Methanol synthesis,
- Carbon dioxide hydrogenation
-
-
-
-
[1]
(1) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009
-
[2]
(2) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s
-
[3]
(3) Olah, G. A.; eppert, A.; Prakash, G. J. Org. Chem. 2009, 74, 487. doi: 10.1021/jo801260f
-
[4]
(4) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S. Acta Phys. -Chim. Sin. 2012, 28, 170. [郭晓明, 毛东森, 卢冠忠, 王嵩. 物理化学学报, 2012, 28, 170.] doi: 10.3866/PKU.WHXB201228170
-
[5]
(5) Liang, X. L.; Dong, X.; Lin, G. D.; Zhang, H. B. Appl. Catal. B 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018
-
[6]
(6) Natesakhawat, S.; Lekse, J.W.; Baltrus, J. P.; Ohodnicki, P. R., Jr.; Howard, B. H.; Deng, X.; Matranga, C. ACS Catalysis 2012, 2, 1667. doi: 10.1021/cs300008g
-
[7]
(7) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. J. Mol. Catal. A-Chem. 2011, 345, 60. doi: 10.1016/j.molcata.2011.05.019
-
[8]
(8) Tang, Q. L.; Hong, Q. J.; Liu, Z. P. J. Catal. 2009, 263, 114. doi: 10.1016/j.jcat.2009.01.017
-
[9]
(9) Keskitalo, T. J.; Niemela, M.; Krause, A. Langmuir 2007, 23, 7612. doi: 10.1021/la7009868
-
[10]
(10) Jung, K. T.; Bell, A. T. Catal. Lett. 2002, 80, 63. doi: 10.1023/A:1015326726898
-
[11]
(11) Kilo, M.; Weigel, J.; Wokaun, A.; Koeppel, R. A.; Stoeckli, A.; Baiker, A. J. Mol. Catal. A-Chem. 1997, 126, 169. doi: 10.1016/S1381-1169(97)00109-X
-
[12]
(12) Wang, D. S.; Tan, Y. S.; Han, Y. Z.; Noritatsu, T. Chin. J. Catal. 2008, 29, 63. [王东升, 谭猗生, 韩怡卓, 椿范立. 催化学报, 2008, 29, 63.]
-
[13]
(13) Wang, W. H.; Huang, B. C.; Wang, L. S.; Ye, D. Q. Surf. Coat. Tech. 2011, 205, 4896. doi: 10.1016/j.surfcoat.2011.04.100
-
[14]
(14) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012
-
[15]
(15) Chen, L. M.; Ma, D.; Zhang, Z.; Guo, Y. Y.; Ye, D. Q.; Huang, B. C. ChemCatChem 2012, 4, 1960.
-
[16]
(16) Chen, L. M.; Ma, D.; Zhang, Z.; Guo, Y. Y.; Ye, D. Q.; Huang, B. C. Catal. Lett. 2012, 142, 975. doi: 10.1007/s10562-012-0850-0
-
[17]
(17) Chen, L. M.; Ma, D.; Bao, X. H. J. Phys. Chem. C 2007, 111, 2229.
-
[18]
(18) Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916
-
[19]
(19) Dong, X.; Liang, X. L.; Li, H. Y.; Lin, G. D.; Zhang, P.; Zhang, H. B. Catal. Today 2009, 147, 158. doi: 10.1016/j.cattod.2008.11.025
-
[20]
(20) Zhang, H. B.; Liang, X. L.; Dong, X.; Li, H. Y.; Lin, G. D. Catal. Sur. Asia 2009, 13, 41. doi: 10.1007/s10563-009-9066-8
-
[21]
(21) Sloczynski, J.; Grabowski, R.; Kozlowska, A.; Olszewski, P.; Lachowska, M.; Skrzypek, J.; Stoch, J. Appl. Catal. A-Gen. 2003, 249, 129. doi: 10.1016/S0926-860X(03)00191-1
-
[22]
(22) Pokrovski, K. A.; Rhodes, M. D.; Bell, A. T. J. Catal. 2005, 235, 368. doi: 10.1016/j.jcat.2005.09.002
-
[23]
(23) Lin, M. G.; Yang, C.; Wu, G. S.; Wei, W.; Li, W. H.; Shan, Y. K.; Sun, Y. H.; He, M. Y. Chin. J. Catal. 2004, 25, 591. [林明桂, 杨成, 吴贵升, 魏伟, 李文怀, 单永奎, 孙予罕, 何鸣元. 催化学报, 2004, 25, 591.]
-
[24]
(24) Zhang, L. X.; Zhang, Y. C.; Chen, S. Y. Appl. Catal. A-Gen. 2012, 415, 118.
-
[25]
(25) Saito, M.; Murata, K. Catal. Sur. 2004, 8, 285. doi: 10.1007/s10563-004-9119-y
-
[26]
(26) Alwin, M.; Mathias, P.; Karl, W. Production of Oxygenated Organic Compounds. US Patent 15585591, 1925-10-27.
-
[27]
(27) Kim, D. H.; Cha, J. E. Catal. Lett. 2003, 86, 107. doi: 10.1023/A:1022671327794
-
[28]
(28) Hao, A. X.; Yu, Y.; Chen, H. B.; Mao, C. P.; Wei, S. X.; Yin, Y. S. Acta Phys. -Chim. Sin. 2013, 29, 2047. [郝爱香, 于杨, 陈海波, 毛春鹏, 魏士新, 殷玉圣. 物理化学学报, 2013, 29, 2047.] doi: 10.3866/PKU.WHXB201306211
-
[29]
(29) Esposito, S.; Turco, M.; Bagnasco, G.; Cammarano, C.; Pernice, P.; Aronne, A. Appl. Catal. A-Gen. 2010, 372, 48. doi: 10.1016/j.apcata.2009.10.006
-
[30]
(30) Chen, H. B.; Liao, D.W.; Yu, L. J.; Lin, Y. J.; Yi, J.; Zhang, H. B.; Tsai, K. R. Appl. Surf. Sci. 1999, 147, 85. doi: 10.1016/S0169-4332(99)00081-1
-
[31]
(31) Hoang, D. L.; Dittmar, A.; Radnik, J.; Brzezinka, K.W.; Witke, K. Appl. Catal. A-Gen. 2003, 239, 95. doi: 10.1016/S0926-860X(02)00375-7
-
[32]
(32) Jones, S. D.; Hagelin-Weaver, H. E. Appl. Catal. B-Environ. 2009, 90, 195. doi: 10.1016/j.apcatb.2009.03.013
-
[33]
(33) Av uropoulos, G.; Ioannides. T.; Matralis, H. Appl. Catal. BEnviron. 2005, 56, 87. doi: 10.1016/j.apcatb.2004.07.017
-
[34]
(34) Av uropoulos, G.; Ioannides, T. Appl. Catal. A-Gen. 2003, 244, 155. doi: 10.1016/S0926-860X(02)00558-6
-
[35]
(35) Xu, L.Y.; Wang, Q. X.; Liang, D. B.; Wang, X.; Lin, L.W.; Cui, W.; Xu, Y. D. Appl. Catal. A 1998, 173 , 19.
-
[36]
(36) Li, J. T.; Zhang, W. D.; Chen, M. K.; Ou, Z. T. Nat. Gas Chem. Ind. 1998, 23, 14. [李基涛, 张伟德, 陈明口, 区泽棠. 天然气化工, 1998, 23, 14.]
-
[37]
(37) Zhang, L. X. Investigation of Modification of Catalyst CuOZnO-Al2O3 for Methanol Synthesis from CO2 Catalytic Hydrogenation. Ph. D. Dissertation, Dalian University of Technology, Dalian, 2012. [张鲁湘. CO2 催化加氢合成甲醇催化剂CuO-ZnO-Al2O3 改性的研究[D]. 大连: 大连理工大学, 2012.]
-
[38]
(38) Li, M. J.; Yao, Z. C.; Zhang, J.; Ying, P. L.; Xin, Q.; Li, C. Chin. J. Catal. 2003, 5, 861. [李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿. 催化学报, 2003, 5, 861.]
-
[39]
(39) Li, M. J.; Feng, Z. C.; Ying, P. L.; Xin, Q.; Li, C. Phys. Chem. Chem. Phys. 2003, 5, 5326. doi: 10.1039/b310284j
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[5]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[7]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[8]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[12]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[13]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[16]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[17]
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
-
[18]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[19]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[20]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[1]
Metrics
- PDF Downloads(625)
- Abstract views(922)
- HTML views(18)