Citation: WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 923-931. doi: 10.3866/PKU.WHXB201403051 shu

Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation

  • Received Date: 8 January 2014
    Available Online: 5 March 2014

    Fund Project:

  • A series of Cu/ZrO2/CNTs-NH2 catalysts with various chromium dopings were prepared using a coprecipitation method for the synthesis of methanol by the hydrogenation of CO2. The impact of the addition of chromium on the catalytic performance of the Cu/ZrO2/CNTs-NH2 catalyst was investigated in a fixed-bed plug flow reactor. When the chromium loading was set to 1% of the total amount of Cu2+ and Zr4+, the methanol yield increased to a maximum of 7.78% (reaction conditions: 3.0 MPa, 260 ℃, V(H2):V(CO2):V(N2)=69:23:8 and gaseous hourly space velocity (GHSV)=3600 mL·h-1·g-1). The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), temperature-programmed desorption of H2 (H2-TPD), X-ray photoelectron spectroscopy (XPS), temperature- programmed desorption of CO2 (CO2-TPD), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of these analyses indicated that the introduction of chromium reduced the size of the Cu nanoparticles, enhanced the dispersion of the Cu species, inhibited the phase transformation and sintering of ZrO2, increased the specific surface area, enhanced the amount of CO2 adsorbed, and promoted the conversion of weakly adsorbed CO2 species to strongly adsorbed CO2 species. Taken together, these factors lead to a high methanol yield. However, when the chromium loading was greater than 1%, the amount Cu and Zr on the surface, as well as the size of the Cu nanoparticle reduced considerably, which led to a significant reduction in the adsorption of CO2 species. This effect also facilitated the formation of strongly adsorbed CO2 species, leading to lower methanol yields.

  • 加载中
    1. [1]

      (1) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. J. Catal. 2010, 271, 178. doi: 10.1016/j.jcat.2010.01.009

    2. [2]

      (2) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s

    3. [3]

      (3) Olah, G. A.; eppert, A.; Prakash, G. J. Org. Chem. 2009, 74, 487. doi: 10.1021/jo801260f

    4. [4]

      (4) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S. Acta Phys. -Chim. Sin. 2012, 28, 170. [郭晓明, 毛东森, 卢冠忠, 王嵩. 物理化学学报, 2012, 28, 170.] doi: 10.3866/PKU.WHXB201228170

    5. [5]

      (5) Liang, X. L.; Dong, X.; Lin, G. D.; Zhang, H. B. Appl. Catal. B 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018

    6. [6]

      (6) Natesakhawat, S.; Lekse, J.W.; Baltrus, J. P.; Ohodnicki, P. R., Jr.; Howard, B. H.; Deng, X.; Matranga, C. ACS Catalysis 2012, 2, 1667. doi: 10.1021/cs300008g

    7. [7]

      (7) Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. J. Mol. Catal. A-Chem. 2011, 345, 60. doi: 10.1016/j.molcata.2011.05.019

    8. [8]

      (8) Tang, Q. L.; Hong, Q. J.; Liu, Z. P. J. Catal. 2009, 263, 114. doi: 10.1016/j.jcat.2009.01.017

    9. [9]

      (9) Keskitalo, T. J.; Niemela, M.; Krause, A. Langmuir 2007, 23, 7612. doi: 10.1021/la7009868

    10. [10]

      (10) Jung, K. T.; Bell, A. T. Catal. Lett. 2002, 80, 63. doi: 10.1023/A:1015326726898

    11. [11]

      (11) Kilo, M.; Weigel, J.; Wokaun, A.; Koeppel, R. A.; Stoeckli, A.; Baiker, A. J. Mol. Catal. A-Chem. 1997, 126, 169. doi: 10.1016/S1381-1169(97)00109-X

    12. [12]

      (12) Wang, D. S.; Tan, Y. S.; Han, Y. Z.; Noritatsu, T. Chin. J. Catal. 2008, 29, 63. [王东升, 谭猗生, 韩怡卓, 椿范立. 催化学报, 2008, 29, 63.]

    13. [13]

      (13) Wang, W. H.; Huang, B. C.; Wang, L. S.; Ye, D. Q. Surf. Coat. Tech. 2011, 205, 4896. doi: 10.1016/j.surfcoat.2011.04.100

    14. [14]

      (14) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012

    15. [15]

      (15) Chen, L. M.; Ma, D.; Zhang, Z.; Guo, Y. Y.; Ye, D. Q.; Huang, B. C. ChemCatChem 2012, 4, 1960.

    16. [16]

      (16) Chen, L. M.; Ma, D.; Zhang, Z.; Guo, Y. Y.; Ye, D. Q.; Huang, B. C. Catal. Lett. 2012, 142, 975. doi: 10.1007/s10562-012-0850-0

    17. [17]

      (17) Chen, L. M.; Ma, D.; Bao, X. H. J. Phys. Chem. C 2007, 111, 2229.

    18. [18]

      (18) Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916

    19. [19]

      (19) Dong, X.; Liang, X. L.; Li, H. Y.; Lin, G. D.; Zhang, P.; Zhang, H. B. Catal. Today 2009, 147, 158. doi: 10.1016/j.cattod.2008.11.025

    20. [20]

      (20) Zhang, H. B.; Liang, X. L.; Dong, X.; Li, H. Y.; Lin, G. D. Catal. Sur. Asia 2009, 13, 41. doi: 10.1007/s10563-009-9066-8

    21. [21]

      (21) Sloczynski, J.; Grabowski, R.; Kozlowska, A.; Olszewski, P.; Lachowska, M.; Skrzypek, J.; Stoch, J. Appl. Catal. A-Gen. 2003, 249, 129. doi: 10.1016/S0926-860X(03)00191-1

    22. [22]

      (22) Pokrovski, K. A.; Rhodes, M. D.; Bell, A. T. J. Catal. 2005, 235, 368. doi: 10.1016/j.jcat.2005.09.002

    23. [23]

      (23) Lin, M. G.; Yang, C.; Wu, G. S.; Wei, W.; Li, W. H.; Shan, Y. K.; Sun, Y. H.; He, M. Y. Chin. J. Catal. 2004, 25, 591. [林明桂, 杨成, 吴贵升, 魏伟, 李文怀, 单永奎, 孙予罕, 何鸣元. 催化学报, 2004, 25, 591.]

    24. [24]

      (24) Zhang, L. X.; Zhang, Y. C.; Chen, S. Y. Appl. Catal. A-Gen. 2012, 415, 118.

    25. [25]

      (25) Saito, M.; Murata, K. Catal. Sur. 2004, 8, 285. doi: 10.1007/s10563-004-9119-y

    26. [26]

      (26) Alwin, M.; Mathias, P.; Karl, W. Production of Oxygenated Organic Compounds. US Patent 15585591, 1925-10-27.

    27. [27]

      (27) Kim, D. H.; Cha, J. E. Catal. Lett. 2003, 86, 107. doi: 10.1023/A:1022671327794

    28. [28]

      (28) Hao, A. X.; Yu, Y.; Chen, H. B.; Mao, C. P.; Wei, S. X.; Yin, Y. S. Acta Phys. -Chim. Sin. 2013, 29, 2047. [郝爱香, 于杨, 陈海波, 毛春鹏, 魏士新, 殷玉圣. 物理化学学报, 2013, 29, 2047.] doi: 10.3866/PKU.WHXB201306211

    29. [29]

      (29) Esposito, S.; Turco, M.; Bagnasco, G.; Cammarano, C.; Pernice, P.; Aronne, A. Appl. Catal. A-Gen. 2010, 372, 48. doi: 10.1016/j.apcata.2009.10.006

    30. [30]

      (30) Chen, H. B.; Liao, D.W.; Yu, L. J.; Lin, Y. J.; Yi, J.; Zhang, H. B.; Tsai, K. R. Appl. Surf. Sci. 1999, 147, 85. doi: 10.1016/S0169-4332(99)00081-1

    31. [31]

      (31) Hoang, D. L.; Dittmar, A.; Radnik, J.; Brzezinka, K.W.; Witke, K. Appl. Catal. A-Gen. 2003, 239, 95. doi: 10.1016/S0926-860X(02)00375-7

    32. [32]

      (32) Jones, S. D.; Hagelin-Weaver, H. E. Appl. Catal. B-Environ. 2009, 90, 195. doi: 10.1016/j.apcatb.2009.03.013

    33. [33]

      (33) Av uropoulos, G.; Ioannides. T.; Matralis, H. Appl. Catal. BEnviron. 2005, 56, 87. doi: 10.1016/j.apcatb.2004.07.017

    34. [34]

      (34) Av uropoulos, G.; Ioannides, T. Appl. Catal. A-Gen. 2003, 244, 155. doi: 10.1016/S0926-860X(02)00558-6

    35. [35]

      (35) Xu, L.Y.; Wang, Q. X.; Liang, D. B.; Wang, X.; Lin, L.W.; Cui, W.; Xu, Y. D. Appl. Catal. A 1998, 173 , 19.

    36. [36]

      (36) Li, J. T.; Zhang, W. D.; Chen, M. K.; Ou, Z. T. Nat. Gas Chem. Ind. 1998, 23, 14. [李基涛, 张伟德, 陈明口, 区泽棠. 天然气化工, 1998, 23, 14.]

    37. [37]

      (37) Zhang, L. X. Investigation of Modification of Catalyst CuOZnO-Al2O3 for Methanol Synthesis from CO2 Catalytic Hydrogenation. Ph. D. Dissertation, Dalian University of Technology, Dalian, 2012. [张鲁湘. CO2 催化加氢合成甲醇催化剂CuO-ZnO-Al2O3 改性的研究[D]. 大连: 大连理工大学, 2012.]

    38. [38]

      (38) Li, M. J.; Yao, Z. C.; Zhang, J.; Ying, P. L.; Xin, Q.; Li, C. Chin. J. Catal. 2003, 5, 861. [李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿. 催化学报, 2003, 5, 861.]

    39. [39]

      (39) Li, M. J.; Feng, Z. C.; Ying, P. L.; Xin, Q.; Li, C. Phys. Chem. Chem. Phys. 2003, 5, 5326. doi: 10.1039/b310284j


  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    13. [13]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

Metrics
  • PDF Downloads(625)
  • Abstract views(922)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return