Citation: WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong, DENG Zan-Hong, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun. Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 873-880. doi: 10.3866/PKU.WHXB201403042
-
Single-crystal TiO2 nanorod arrays (TNRs) are proposed to increase the electron transport rate and improve the cell performance of quantum dot- sensitized solar cells (QDSCs). However, the specific surface area of TNRs is much lower than that of TiO2 nanoparticle films, which leads to lower quantum dot adsorption and lower power conversion efficiency (η). In our investigation, TiCl4 solution was used to modify single-crystal rutile TNRs. The modification resulted in the synthesis of a large number of TiO2 nanoparticles on the surfaces of nanorods, which significantly increased the surface area and quantum dot adsorption of TNRs. When the TiCl4 modification time was 60 h, the short-circuit photocurrent density (Jsc) and η of TNRs based CdS/CdSe co-sensitized QDSCs increased from (2.93±0.07) mA·cm-2 and 0.36%±0.02% to (8.19±0.12) mA·cm-2 and 1.17%±0.07%, respectively. In addition, intensity modulated photocurrent spectroscopy measurements indicated that the electron transport rate in modified single-crystal rutile TNRs is faster than that in anatase TiO2 nanoparticle films, which is a desirable result.
-
-
[1]
(1) Yu, W.W.; Peng, X. Angew. Chem. Int. Edit. 2002, 41, 2368.
-
[2]
(2) Chang, C. H.; Lee, Y. L. Appl. Phys. Lett. 2007, 91, 053503. doi: 10.1063/1.2768311
-
[3]
(3) Nozik, A. J. Inorg. Chem. 2005, 44, 6893. doi: 10.1021/ic0508425
-
[4]
(4) Pandey, A.; Guyot-Sionnest, P. J. Phys. Chem. Lett. 2010, 1, 45. doi: 10.1021/jz900022z
-
[5]
(5) Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183. doi: 10.1021/j100063a022
-
[6]
(6) Guo, X. D.; Ma, B. B.; Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261
-
[7]
(7) Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 908. doi: 10.1021/jz400052e
-
[8]
(8) Emin, S.; Yanagida, M.; Peng, W.; Han, L. Sol. Energy Mater. Sol. Cells 2012, 101, 5. doi: 10.1016/j.solmat.2012.02.014
-
[9]
(9) Hanna, M. C.; Nozik, A. J. J. Appl. Phys. 2006, 100, 074510. doi: 10.1063/1.2356795
-
[10]
(10) Shen, Q.; Yamada, A.; Tamura, S.; Toyoda, T. Appl. Phys. Lett. 2010, 97, 123107. doi: 10.1063/1.3491245
-
[11]
(11) Chen, L. Y.; Yang, Z.; Chen, C. Y.; Ho, T. Y.; Liu, P.W.; Chang, H. T. Nanoscale 2011, 3, 4940. doi: 10.1039/c1nr10892a
-
[12]
(12) Seol, M.; Kim, H.; Tak, Y.; Yong, K. Chem. Commun. 2010, 46, 5521. doi: 10.1039/c0cc00542h
-
[13]
(13) Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741
-
[14]
(14) Cao, C.; Hu, C.; Shen, W.; Wang, S.; Tian, Y.; Wang, X. J. Alloy. Compd. 2012, 523, 139. doi: 10.1016/j.jallcom.2012.01.126
-
[15]
(15) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985. doi: 10.1021/ja8078972
-
[16]
(16) Wang, J.; Zhang, T.; Wang, D.; Pan, R.; Wang, Q.; Xia, H. J. Alloy. Compd. 2013, 551, 82. doi: 10.1016/j.jallcom.2012.09.113
-
[17]
(17) Tao, R. H.; Wu, J. M.; Xue, H. X.; Song, X. M.; Pan, X.; Fang, X. Q.; Fang, X. D.; Dai, S. Y. J. Power Sources 2010, 195, 2989. doi: 10.1016/j.jpowsour.2009.11.075
-
[18]
(18) Wang, S. M.; Dong, W.W.; Tao, R. H.; Deng, Z. H.; Shao, J. Z.; Hu, L. H.; Zhu, J.; Fang, X. D. J. Power Sources 2013, 235, 193. doi: 10.1016/j.jpowsour.2013.01.106
-
[19]
(19) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.v19:4
-
[20]
(20) Zhang, R.; Luo, Q. P.; Chen, H. Y.; Yu, X. Y.; Kuang, D. B.; Su, C. Y. ChemPhysChem 2012, 13, 1435. doi: 10.1002/cphc.v13.6
-
[21]
(21) Liu, Q.; Zhou, Y.; Duan, Y.; Wang, M.; Zhao, X.; Lin, Y. J. Alloy. Compd. 2013, 548, 161. doi: 10.1016/j.jallcom.2012.08.125
-
[22]
(22) Yu, X. Y.; Liao, J. Y.; Qiu, K. Q.; Kuang, D. B.; Su. C. Y. ACS Nano 2011, 5, 9494.
-
[23]
(23) Zhang, Y.; Zhu, J.; Yu, X.; Wei, J.; Hu, L.; Dai, S. Sol. Energy 2012, 86, 964. doi: 10.1016/j.solener.2012.01.006
-
[24]
(24) Zhu, J.; Yu, X. C.; Wang, S. M.; Dong, W.W.; Hu, L. H.; Fang, X. D.; Dai, S. Y. Acta Phys. -Chim. Sin. 2013, 29, 533. [朱俊, 余学超, 王时茂, 董伟伟, 胡林华, 方晓东, 戴松元. 物理化学学报, 2013, 29, 533.] doi: 10.3866/PKU.WHXB201212124
-
[25]
(25) Mora-Seró, I.; Giménez, S.; Fabregat-Santia , F.; Gómez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Accounts Chem. Res. 2009, 42, 1848. doi: 10.1021/ar900134d
-
[26]
(26) Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k
-
[27]
(27) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[28]
(28) Kambe, S.; Nakade, S.; Wada, Y.; Kitamura, T.; Yanagida, S. J. Mater. Chem. 2002, 12, 723. doi: 10.1039/b105142n
-
[29]
(29) Sommeling, P. M.; O′Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; Van Roosmalen, J. A. M. J. Phys. Chem. B 2006, 110, 19191. doi: 10.1021/jp061346k
-
[30]
(30) Hu, L.; Dai, S.; Weng, J.; Xiao, S.; Sui, Y.; Huang, Y.; Chen, S.; Kong, F.; Pan, X.; Liang, L.; Wang, K. J. Phys. Chem. B 2007, 111, 358. doi: 10.1021/jp065541a
-
[31]
(31) Enache-Pommer, E.; Liu, B.; Aydil, E. S. Phys. Chem. Chem. Phys. 2009, 11, 9648. doi: 10.1039/b915345d
-
[32]
(32) Yang, M.; Ding, B.; Lee, S.; Lee, J. K. J. Phys. Chem. C 2011, 115, 14534. doi: 10.1021/jp2025126
-
[33]
(33) Park, N. G.; Van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989.
-
[1]
-
-
[1]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[2]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[3]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[8]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[9]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[12]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[13]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[14]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[15]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[18]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[19]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[20]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[1]
Metrics
- PDF Downloads(592)
- Abstract views(838)
- HTML views(9)