Citation: WANG Liu-Heng, PENG Rong-Zong, ZHAO Yu-Xia, WU Fei-Peng. Synthesis and Optical Limiting Behaviors of Malononitrile Derivatives[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 980-986. doi: 10.3866/PKU.WHXB201403031 shu

Synthesis and Optical Limiting Behaviors of Malononitrile Derivatives

  • Received Date: 22 January 2014
    Available Online: 3 March 2014

    Fund Project:

  • A series of malononitrile derivatives (D1-D7) with different electron donors and conjugation lengths were designed and synthesized. Their structures were characterized using 1H and 13C nuclear magnetic resonance (NMR) spectroscopies, and high-resolution mass spectrometry (HRMS). Their linear photophysical properties were investigated in dimethylformamide (DMF) solutions, their optical stabilities were investigated using photobleaching experiments, and their thermal stabilities were determined using thermogravimetric analysis (TGA). The optical limiting behaviors of D1-D7 under an 800 nm femtosecond pulsed laser (Ti:sapphire laser, ~130 fs, 1000 Hz) were investigated. The results showed that four of the compounds (D4-D7), which had dialkylamines as electron donors, exhibited significant optical limiting behaviors, based on two-photon absorption (2PA), but the other three compounds (D1-D3), which had either weak donors or short conjugation lengths, showed very weak optical limiting behaviors. All the compounds had od photochemical and thermal stabilities. The 2PA cross-sections and optothermal stabilities of this series of compounds increased with increasing conjugation length or electron-donating ability of the alkylamine groups in their structures. D7, which had the best properties, is a potential candidate for optical limiting applications under an 800 nm femtosecond pulsed laser.

  • 加载中
    1. [1]

      (1) Tutt, L.W.; Boggess, T. F. Prog. Quantum Electron. 1993, 17, 299. doi: 10.1016/0079-6727(93)90004-S

    2. [2]

      (2) Zheng, L. S.; Feng, M.; Zhan, H. B. Acta Phys. -Chim. Sin. 2012, 28, 208. [郑立思, 冯苗, 詹红兵. 物理化学学报, 2012, 28, 208.] doi: 10.3866/PKU.WHXB201228208

    3. [3]

      (3) He, G. S.; Gvishi, R.; Prasad, P. N.; Reinhardt, B. A. Opt. Commun. 1995, 117, 133. doi: 10.1016/0030-4018(95)00097-R

    4. [4]

      (4) He, G. S.; Bhawalkar, J. D.; Zhao, C. F.; Prasad, P. N. Appl. Phys. Lett. 1995, 67, 2433. doi: 10.1063/1.114598

    5. [5]

      (5) He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108, 1245. doi: 10.1021/cr050054x

    6. [6]

      (6) Ehrlich, J. E.;Wu, X. L.; Lee, I. Y. S.; Hu, Z. Y.; Röckel, H.; Marder, S. R.; Perry, J.W. Opt. Lett. 1997, 22, 1843. doi: 10.1364/OL.22.001843

    7. [7]

      (7) Morel, Y.; Irimia, A.; Najechalski, P.; Kervella, Y.; Stephan, O.; Baldeck, P. L.; Andraud, C. J. Chem. Phys. 2001, 114, 5391. doi: 10.1063/1.1351160

    8. [8]

      (8) Silly, M. G.; Porre? s, L.; Mongin, O.; Chollet, P. A.; Blanchard-Desce, M. Chem. Phys. Lett. 2003, 379, 74. doi: 10.1016/j.cplett.2003.08.017

    9. [9]

      (9) Mongin, O.; Porrés, L.; Katan, C.; Pons, T.; Mertzb, J.; Blanchard-Desce, M. Tetrahedron Lett. 2003, 44, 8121. doi: 10.1016/j.tetlet.2003.09.025

    10. [10]

      (10) He, G. H.; Zhang, J. X.; Ye, L. H.; Cui, Y. P.; Li, Z. H.; Lai, J. C.; He, A. Z. Acta Phys. Sin. 2003, 52, 1929. [何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 物理学报, 2003, 52, 1929.]

    11. [11]

      (11) Charlot, M.; Izard, N.; Mongin, O.; Riehl, D.; Blanchard-Desce, M. Chem. Phys. Lett. 2006, 417, 297. doi: 10.1016/j.cplett.2005.10.033

    12. [12]

      (12) Gu, B.; Ji,W.; Patil, P. S.; Dharmaprakash, S. M. J. Appl. Phys. 2008, 103, 103511. doi: 10.1063/1.2924419

    13. [13]

      (13) Four, M.; Riehl, D.; Mongin, O.; Blanchard-Desce, M.; Lawson-Daku, L. M.; Moreau, J.; Chauvin, J.; Delairef, J. A.; Lemercier, G. Phys. Chem. Chem. Phys. 2011, 13, 17304. doi: 10.1039/c1cp21661a

    14. [14]

      (14) Lin, T. C.; Guo, F. L.; Li, M. H.; Liu, C. Y. Chem. Asian J. 2013, 8, 2102. doi: 10.1002/asia.201300223

    15. [15]

      (15) Lin, T. C.; Li, M. H.; Liu, C. Y.; Lin, J. H.; Shen, Y. K.; Lee, Y. H. J. Mater. Chem. C 2013, 1, 2764. doi: 10.1039/c3tc00623a

    16. [16]

      (16) He, G. S.;Weder, C.; Smith, P.; Prasad, P. N. IEEE J. Quantum Electron. 1998, 34, 2279.

    17. [17]

      (17) He, G. S.; Swiatkiewicz, J.; Jiang, Y.; Prasad, P. N.; Reinhardt, B. A.; Tan, L. S.; Kannan, R. J. Phys. Chem. A 2000, 104, 4805. doi: 10.1021/jp000370+

    18. [18]

      (18) Lee, K. S.; Lee, J. H.; Choi, H.; Cha, M.; Chung, M. A.; Kim, Y. J.; Jung, S. D. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 2001, 370, 155.

    19. [19]

      (19) Zheng, Q.; He, G. S.; Lu, C.; Prasad, P. N. J. Mater. Chem. 2005, 15, 3488. doi: 10.1039/b508005c

    20. [20]

      (20) Zheng, Q.; Gupta, S. K.; He, G. S.; Tan, L. S.; Prasad, P. N. Adv. Funct. Mater. 2008, 18, 2770. doi: 10.1002/adfm.v18:18

    21. [21]

      (21) Li, C.; Yang, K.; Feng, Y.; Su, X.; Yang, J.; Jin, X.; Shui, M.; Wang, Y.; Zhang, X.; Song, Y.; Xu, H. J. Phys. Chem. B 2009, 113, 15730. doi: 10.1021/jp906057y

    22. [22]

      (22) Tang, C.; Zheng, Q.; Zhu, H.;Wang, L.; Chen, S. C.; Ma, E.; Chen, X. J. Mater. Chem. C 2013, 1, 1771. doi: 10.1039/c2tc00780k

    23. [23]

      (23) Wu, J.; Shi, M.; Zhao, Y.;Wu, F. Dyes Pigments 2008, 76, 690. doi: 10.1016/j.dyepig.2007.01.007

    24. [24]

      (24) Wang, L.; Zhao, Y.; Guan, J.;Wu, F. Appl. Phys. Lett. 2013, 102, 251906. doi: 10.1063/1.4812402

    25. [25]

      (25) Wang, G.W.; Cheng, B. Arkivoc 2004, 5, 4.

    26. [26]

      (26) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508. doi: 10.1021/jo00128a024

    27. [27]

      (27) Park, B. S.; El-deeb, I. M.; Yoo, K. H.; Han, D. K.; Tae, J. S.; Lee, S. H. Bull. Korean Chem. Soc. 2012, 33, 3629. doi: 10.5012/bkcs.2012.33.11.3629


  • 加载中
    1. [1]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    11. [11]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(510)
  • Abstract views(513)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return