Citation: RUAN Lin-Wei, ZHU Yu-Jun, QIU Ling-Guang, LU Yu-Xiang. First-Principles Calculations of Optical and Elastic Properties of Carbon-Doped α-S8[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 845-854. doi: 10.3866/PKU.WHXB201402251 shu

First-Principles Calculations of Optical and Elastic Properties of Carbon-Doped α-S8

  • Received Date: 30 December 2013
    Available Online: 25 February 2014

    Fund Project:

  • In this study, we performed a first-principles investigation of the rules verning changes in the electronic structure, band structure, optical properties, elastic properties, and anisotropy of an α-S8 photocatalyst after carbon doping. It was shown that the bond length decreased, and the bond overlap population and charge density increased, with the formation of new C―S bonds, after doping. This indicated that the new bonds had enhanced covalence. The energy band gap of the doped structure was 2.64 eV, which is 0.15 eV lower than that of pure α-S8, showing that doping increased the conductivity of α-S8. The optical absorption spectrum of the doped system was extended to 650 nm, showing that the light absorption efficiency of α-S8 was greatly enhanced. Calculations of the elastic properties showed that the mechanical capacity of carbon-doped α-S8 decreased, but it remained brittle. The doped material had higher anisotropy.

  • 加载中
    1. [1]

      (1) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317

    2. [2]

      (2) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. J. Phys. Chem. C 2011, 115, 7355. doi: 10.1021/jp200953k

    3. [3]

      (3) Zhu, J. J.; Wei, Y. C.; Chen, W. K.; Zhao, Z.; Thomas, A. Chem. Commun. 2010, 46, 6965. doi: 10.1039/c0cc01432j

    4. [4]

      (4) Kumar, B. V.; Naik, H. B.; Girija, D. J. Chem. Sci. 2011, 123, 615. doi: 10.1007/s12039-011-0133-0

    5. [5]

      (5) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625. doi: 10.1038/414625a

    6. [6]

      (6) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    7. [7]

      (7) Zhang, A. P.; Zhang, J. Z. Acta Phys. -Chim. Sin. 2010, 26, 1337. [张爱平, 张进治. 物理化学学报, 2010, 26, 1337.] doi: 10.3866/PKU.WHXB20100533

    8. [8]

      (8) Wang, C. Y.; Zhang, H.; Li, F.; Zhu, L. Y. Environ. Sci. Technol. 2010, 44, 6843. doi: 10.1021/es101890w

    9. [9]

      (9) Ying, H.; Wang, Z. Y.; Guo, Z. D.; Shi, Z. J.; Yang, S. F. Acta Phys. -Chim. Sin. 2011, 27, 1482. [应红, 王志永, 郭振铎, 施祖进, 杨上峰. 物理化学学报, 2011, 27, 1482.] doi: 10.3866/PKU.WHXB20110630

    10. [10]

      (10) Ouyang, S.; Li, Z. S.; Ouyang, Z.; Yu, T.; Ye, J. H.; Zou, Z. G. J. Phys. Chem. C 2008, 112, 3134. doi: 10.1021/jp077127w

    11. [11]

      (11) Long, B. H.; Huang, J. H.; Wang, X. C. Prog. Nat. Sci: Mater. Int. 2012, 22, 644. doi: 10.1016/j.pnsc.2012.11.007

    12. [12]

      (12) Ma, X. G.; Lv, Y. H.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F. J. Phys. Chem. C 2012, 116, 23485. doi: 10.1021/jp308334x

    13. [13]

      (13) Liu, G.; Niu, P.; Cheng, H. M. J. Am. Chem. Soc. 2012, 134, 9070. doi: 10.1021/ja302897b

    14. [14]

      (14) Wang, W. J.; Yu, J. C.; Xia, D. H.; Wong, P. K.; Li, Y. C. Environ. Sci. Technol. 2013, 47, 8724.

    15. [15]

      (15) Ding, G. D.; Wang, W. T.; Jiang, T.; Han, B. X.; Fan, H. L.; Yang, G. Y. ChemCatChem 2013, 5, 192. doi: 10.1002/cctc.201200502

    16. [16]

      (16) Dong, G. H.; Zhao, K.; Zhang, L. Z. Chem. Commun. 2012, 48, 6178. doi: 10.1039/c2cc32181e

    17. [17]

      (17) Yue, B.; Li, Q. Y.; Iwai, H.; Kako, T.; Ye, J. H. Sci. Technol. Adv. Mater. 2011, 12 (3), 7.

    18. [18]

      (18) Íñiguez, J.; Yildirim, T.; Udovic, T. J.; Sulic, M.; Jensen, C. M. Phys. Rev. B 2004, 70 (6), 4.

    19. [19]

      (19) Li, Y. L.; Zhao, X.; Fan, W. L. J. Phys. Chem. C 2011, 115, 3552. doi: 10.1021/jp1098816

    20. [20]

      (20) Yang, N.; Li, G. Q.; Wang, W. L.; Yang, X. L.; Zhang, W. F. J. Phys. Chem. Solids 2011, 72, 1319. doi: 10.1016/j.jpcs.2011.07.028

    21. [21]

      (21) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566. doi: 10.1103/PhysRevLett.45.566

    22. [22]

      (22) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892

    23. [23]

      (23) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

    24. [24]

      (24) Fischer, T. H.; Almlof, J. J. Phys. Chem. 1992, 96, 9768. doi: 10.1021/j100203a036

    25. [25]

      (25) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condes. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301

    26. [26]

      (26) Li, Q. K.; Wang, B.; Woo, C. H.; Wang, H.; Wang, R. J. Phys. Chem. Solids 2007, 68, 1336. doi: 10.1016/j.jpcs.2007.02.035

    27. [27]

      (27) Molina, B.; Sansores, L. E. Mod. Phys. Lett. B 1999, 13, 193. doi: 10.1142/S0217984999000269

    28. [28]

      (28) Arroyoy de Dompablo, M. E.; Biskup, N.; Gallardo-Amores, J. M.; Moran, E.; Ehrenberg, H.; Amador, U. Chem. Mater. 2010, 22, 994. doi: 10.1021/cm9018869

    29. [29]

      (29) Besancüon, K.; Laurenczy, G.; Lumini, T.; Roulet, R.; Bruyndonckx, R.; Daul, C. Inorg. Chem. 1998, 37, 5634. doi: 10.1021/ic9804162

    30. [30]

      (30) Xiao, H.; Tahir-Kheli, J.; ddard, W. A. J. Phys. Chem. Lett. 2011, 2, 212. doi: 10.1021/jz101565j

    31. [31]

      (31) Xu, Y.; Gao, S. P. Int. J. Hydrog. Energy 2012, 37, 11072. doi: 10.1016/j.ijhydene.2012.04.138

    32. [32]

      (32) Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62, 8828. doi: 10.1103/PhysRevB.62.8828

    33. [33]

      (33) O′Donnell, M.; Jaynes, E. T.; Miller, J. G. J. Acoust. Soc. Am. 1981, 69, 696. doi: 10.1121/1.385566

    34. [34]

      (34) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z

    35. [35]

      (35) Wang, Y.; Di, Y.; Antonietti, M.; Li, H. R.; Chen, X. F.; Wang, X. C. Chem. Mater. 2010, 22, 5119. doi: 10.1021/cm1019102

    36. [36]

      (36) Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ. Sci. 2012, 5, 6717. doi: 10.1039/c2ee03479d

    37. [37]

      (37) Niu, P.; Liu, G.; Cheng, H. M. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y

    38. [38]

      (38) Tian, Y. L.; Chang, B. B.; Lu, J. L.; Fu, J.; Xi, F. N.; Dong, X. P. ACS Appl. Mater. Interfaces 2013, 5, 7079. doi: 10.1021/am4013819

    39. [39]

      (39) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24, 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24, 2071.] doi: 10.3866/PKU.WHXB20081123

    40. [40]

      (40) Mahmood, T.; Cao, C. B.; Butt, F. K.; Jin, H. B.; Usman, Z.; Khan, W. S.; Ali, Z.; Tahir, M.; Idrees, F.; Ahmed, M. Physica B 2012, 407, 4495. doi: 10.1016/j.physb.2012.08.006

    41. [41]

      (41) Ding, Y. C. Physica B 2012, 407, 2282. doi: 10.1016/j.physb.2012.03.015

    42. [42]

      (42) Jiang, C.; Srinivasan, S. C. Nature 2013, 496, 339. doi: 10.1038/nature12008

    43. [43]

      (43) Liu, M.; Lv, Z. L.; Cheng, Y.; Ji, G. F.; ng, M. Comput. Mater. Sci. 2013, 79, 811. doi: 10.1016/j.commatsci.2013.07.024

    44. [44]

      (44) Zhang, X. D.; Ying, C. H.; Shi, G. M.; Li, Z. J.; Shi, H. F. Comput. Mater. Sci. 2013, 79, 903. doi: 10.1016/j.commatsci.2013.07.023

    45. [45]

      (45) Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, 1985.

    46. [46]

      (46) Reuss, A. Z. Angew. Math. Mech 1929, 9, 49.

    47. [47]

      (47) Watt, J. P. J. Appl. Phys. 1979, 50, 6290. doi: 10.1063/1.325768

    48. [48]

      (48) Manyali, G. S.; Warmbier, R.; Quandt, A.; Lowther, J. E. Comput. Mater. Sci. 2013, 69, 299. doi: 10.1016/j.commatsci.2012.11.039

    49. [49]

      (49) Bosak, A.; Krisch, M.; Mohr, M.; Maultzsch, J.; Thomsen, C. Phys. Rev. B 2007, 75, 153408.

    50. [50]

      (50) Haines, J.; Léger, J. M.; Bocquillon, G. Annu. Rev. Mater. Res. 2001, 31, 1. doi: 10.1146/annurev.matsci.31.1.1

    51. [51]

      (51) Pugh, S. F. Philosophical Magazine Series 7 1954, 45, 823.

    52. [52]

      (52) Tvergaard, V.; Hutchinson, J.W. J. Am. Ceram. Soc. 1988, 71, 157. doi: 10.1111/jace.1988.71.issue-3

    53. [53]

      (53) Ranganathan, S. I.; Ostoja-Starzewski, M. Phys. Rev. B 2008, 101 (5), 4.

    54. [54]

      (54) Ravindran, B.; Fast, L.; Korzhavyi, P. A.; Johansson, B.; Wills, J.; Eriksson, O. J. Appl. Phys. 1998, 84, 4891. doi: 10.1063/1.368733


  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(643)
  • Abstract views(791)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return