Citation:
LIU Jian-Xin, WANG Yun-Fang, WANG Ya-Wen, FAN Cai-Mei. Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts[J]. Acta Physico-Chimica Sinica,
;2014, 30(4): 729-737.
doi:
10.3866/PKU.WHXB201402243
-
Ag/Ag3PO4/g-C3N4 (g denotes graphitic) was synthesized via an anion-exchange precipitation method, and its photocatalytic activity under visible light and regeneration with H2O2 and NaNH4HPO4 were investigated. The structural characteristics were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The XRD results showed that the structure of the regenerated catalyst was unchanged. The FESEM and UV-Vis absorption spectroscopy results showed that the Ag/Ag3PO4/g-C3N4 catalyst was composed of Ag3PO4 and g-C3N4. XPS showed that a small amount of Ag particles were present on the catalyst surface. The photocatalytic activity was evaluated using phenol degradation under visible light (λ>420 nm) and the photocatalytic mechanism was discussed based on the active species during the photocatalytic process and the band structure. Experimental studies showed that the photocatalytic activity of the as-prepared Ag/Ag3PO4/g-C3N4 was higher than those of pure Ag3PO4 and g-C3N4. The high photocatalytic performance of the Ag/Ag3PO4/g-C3N4 composite can be attributed to the synergistic effect of Ag3PO4, g-C3N4, and a small amount of Ag0. Regeneration using H2O2 and NaNH4HPO4? 4H2O fully restored the photoactivity of the catalyst, showing that this green regeneration method could make Ag/Ag3PO4/g-C3N4 an environmentally friendly catalyst for practical applications.
-
Keywords:
-
Silver phosphate
, - g-C3N4,
- Metallic silver,
- Catalyst regeneration,
- Phenol,
- Photocatalysis
-
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0
-
[2]
(2) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95 (1), 49. doi: 10.1021/cr00033a003
-
[3]
(3) Chen,W.; Dong, X. F.; Chen, Z. S.; Chen, S. Z.; Lin,W. M. Acta Phys. -Chim. Sin. 2009, 25 (6), 1107. [陈威, 董新法, 陈之善, 陈胜洲, 林维明. 物理化学学报, 2009, 25 (6), 1107.]d oi: 10.3866/PKU.WHXB20090624
-
[4]
(4) Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425
-
[5]
(5) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414 (6864), 625. doi: 10.1038/414625a
-
[6]
(6) Yang, Y. Q.; Zhang, G. K.; Yu, S. J.; Shen, X. Chem. Eng. J. 2010, 162 (1), 171. doi: 10.1016/j.cej.2010.05.024
-
[7]
(7) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys.-Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123
-
[8]
(8) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012, 28 (9), 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012, 28 (9), 2214.] doi: 10.3866/PKU.WHXB201206122
-
[9]
(9) Zhang, N.; Zhang, Y. H.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k
-
[10]
(10) Zhang, N.; Liu, S. Q.; Xu, Y. J. Nanoscale 2012, 4, 2227. doi: 10.1039/c2nr00009a
-
[11]
(11) Yang, M. Q.; Xu, Y. J. Phys. Chem. Chem. Phys. 2013, 15, 19102. doi: 10.1039/c3cp53325e
-
[12]
(12) Yang, M. Q.;Weng, B.; Xu, Y. J. J. Mater. Chem. A 2014, 2, 1710. doi: 10.1039/c3ta14370h
-
[13]
(13) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.;Withers, R. L. Nat. Mater. 2010, 9 (7), 559. doi:1 0.1038/nmat2780
-
[14]
(14) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317
-
[15]
(15) Asahi, R.; Morikiwa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051
-
[16]
(16) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121 (49), 11459. doi: 10.1021/ja992541y
-
[17]
(17) Wang, Y. F.; Li, X. L.;Wang, Y.W.; Fan, C. M. J. Solid State Chem. 2013, 202, 51. doi: 10.1016/j.jssc.2013.03.013
-
[18]
(18) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b
-
[19]
(19) Yao,W. F.; Zhang, B.; Huang, C. P.; Ma, C.; Song, X. L.; Xu, Q. J. J. Mater. Chem. 2012, 22, 4050. doi: 10.1039/c2jm14410g
-
[20]
(20) Shen, K.; ndal, M. A.; Siddique, R. G.; Shi, S.;Wang, S. Q.; Sun, J. B.; Xu, Q. Y. Chin. J. Catal. 2014, 35 (1), 78. doi: 10.1016/S1872-2067(12)60712-8
-
[21]
(21) Zhang, L. L.; Zhang, H. C.; Huang, H.; Yang, L.; Kang, Z. H. New J. Chem. 2012, 36 (8), 1541. doi: 10.1039/c2nj40206h
-
[22]
(22) Wang, H.; Bai, Y. S.; Yang, J. T.; Lang, X. F.; Li, J. H.; Guo, L. Chem. Eur. J. 2012, 18 (18), 5524. doi: 10.1002/chem.v18.18
-
[23]
(23) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27), 4467.
-
[24]
(24) Shahbaz, M.; Urano, S.; LeBreton, P. R.; Rossman, M. A.; Hosmane, R. S.; Leonard, N. J. J. Am. Chem. Soc. 1984, 106 (10), 2805. doi: 10.1021/ja00322a014
-
[25]
(25) Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Mater. Chem. Phys. 2004, 86 (1), 123. doi: 10.1016/j.matchemphys.2004.02.023
-
[26]
(26) Hu, C.; Lan, Y. Q.; Qu, J. H.; Hu, X. X.;Wang, A. M. J. Phys. Chem. B 2006, 110 (9), 4066. doi: 10.1021/jp0564400
-
[27]
(27) Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. Surf. Sci. 2005, 588 (1-3), 6.
-
[28]
(28) Ng, H. N.; Calvo, C.; Faggiani, R. Acta Cryst. B 1978, 34 (3), 898. doi: 10.1107/S0567740878014570
-
[29]
(29) Cao, J.; Luo, B. D.; Lin, H. L.; Xu, B. Y.; Chen, S. F. J. Hazard. Mater. 2012, 217 -218, 107.
-
[30]
(30) Khan, A.; Qamar, M.; Muneer, M. Chem. Phys. Lett. 2012, 519 -520, 54.
-
[31]
(31) Zhang, F. J.; Xie, F. Z.; Zhu, S. F.; Liu, J.; Zhang, J.; Mei, S. F.; Zhao,W. Chem. Eng. J. 2013, 228, 435. doi: 10.1016/j.cej.2013.05.027
-
[32]
(32) Liu, J. J.; Fu, X. L.; Chen, S. F.; Zhu, Y. F. Appl. Phys. Lett. 2011, 99 (19), 191903/1. doi: 10.1063/1.3660319
-
[33]
(33) Chen, L. C.; Chen, C. K.;Wei, S. L.; Bhusari, D. M.; Chen, K. H.; Chen, Y. F.; Jong, Y. C.; Huang, Y. S. Appl. Phys. Lett. 1998, 72 (19), 2463. doi: 10.1063/1.121383
-
[34]
(34) Zhang, Q. H.; Gao, L.; Guo, J. K. Appl. Catal. B 2000, 26 (3), 207. doi: 10.1016/S0926-3373(00)00122-3
-
[35]
(35) Liu, Y. P.; Fang, L.; Lu, H. D.; Liu, L. J.;Wang, H.; Hu, C. Z. Catal. Commun. 2012, 17, 200. doi: 10.1016/j.catcom.2011.11.001
-
[36]
(36) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133 (17), 6490. doi: 10.1021/ja2002132
-
[37]
(37) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. Z. J. Phys. Chem. C 2011, 115 (18), 9136. doi: 10.1021/jp2009989
-
[38]
(38) Li, G. T.;Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.;Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027
-
[39]
(39) Li, Y. Y.;Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. J. Mol. Catal. A: Chem. 2011, 334 (1-2), 116.
-
[40]
(40) Kumar, S.; Surendar, T.; Baruahb, A.; Shanker, V. J. Mater. Chem. A 2013, 1, 5333. doi: 10.1039/c3ta00186e
-
[41]
(41) Oliveira, H. G.; Nery, D. C.; Lon , C. Appl. Catal. B 2010, 93 (3-4), 205.
-
[42]
(42) Sobczy ski, A.; Duczmal, .; Zmudzi ski,W. J. Mol. Catal. AChem. 2004, 213 (2), 225. doi: 10.1016/j.molcata.2003.12.006
-
[43]
(43) Peiró, A. M.; Ayllón, J. A.; Peral, J.; Doménech, X. Appl. Catal. B 2001, 30 (3-4), 359.
-
[44]
(44) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27) 4467.
-
[45]
(45) Liu, Y. F.; Zhu, Y. Y.; Xu, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2013, 142 -143, 561.
-
[46]
(46) Ma,W.; Cheng, Z. H.; Gao, Z. X.;Wang, R.;Wang, B. D.; Sun, Q. Chem. Eng. J. 2014, 241, 167. doi: 10.1016/j.cej.2013.12.031
-
[47]
(47) Lin, H. L.; Cao, J.; Luo, B. D.; Xu, B. Y.; Chen, S. F. Catal. Commun. 2012, 21, 91. doi: 10.1016/j.catcom.2012.02.008
-
[1]
-
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[2]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[3]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[4]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[5]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[6]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[7]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[8]
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
-
[9]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
-
[12]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[13]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[14]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[16]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[17]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[18]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[19]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[20]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[1]
Metrics
- PDF Downloads(862)
- Abstract views(1110)
- HTML views(66)