Citation: LIU Jian-Xin, WANG Yun-Fang, WANG Ya-Wen, FAN Cai-Mei. Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 729-737. doi: 10.3866/PKU.WHXB201402243 shu

Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts

  • Received Date: 9 December 2013
    Available Online: 24 February 2014

    Fund Project:

  • Ag/Ag3PO4/g-C3N4 (g denotes graphitic) was synthesized via an anion-exchange precipitation method, and its photocatalytic activity under visible light and regeneration with H2O2 and NaNH4HPO4 were investigated. The structural characteristics were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The XRD results showed that the structure of the regenerated catalyst was unchanged. The FESEM and UV-Vis absorption spectroscopy results showed that the Ag/Ag3PO4/g-C3N4 catalyst was composed of Ag3PO4 and g-C3N4. XPS showed that a small amount of Ag particles were present on the catalyst surface. The photocatalytic activity was evaluated using phenol degradation under visible light (λ>420 nm) and the photocatalytic mechanism was discussed based on the active species during the photocatalytic process and the band structure. Experimental studies showed that the photocatalytic activity of the as-prepared Ag/Ag3PO4/g-C3N4 was higher than those of pure Ag3PO4 and g-C3N4. The high photocatalytic performance of the Ag/Ag3PO4/g-C3N4 composite can be attributed to the synergistic effect of Ag3PO4, g-C3N4, and a small amount of Ag0. Regeneration using H2O2 and NaNH4HPO4? 4H2O fully restored the photoactivity of the catalyst, showing that this green regeneration method could make Ag/Ag3PO4/g-C3N4 an environmentally friendly catalyst for practical applications.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0

    2. [2]

      (2) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95 (1), 49. doi: 10.1021/cr00033a003

    3. [3]

      (3) Chen,W.; Dong, X. F.; Chen, Z. S.; Chen, S. Z.; Lin,W. M. Acta Phys. -Chim. Sin. 2009, 25 (6), 1107. [陈威, 董新法, 陈之善, 陈胜洲, 林维明. 物理化学学报, 2009, 25 (6), 1107.]d oi: 10.3866/PKU.WHXB20090624

    4. [4]

      (4) Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425

    5. [5]

      (5) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414 (6864), 625. doi: 10.1038/414625a

    6. [6]

      (6) Yang, Y. Q.; Zhang, G. K.; Yu, S. J.; Shen, X. Chem. Eng. J. 2010, 162 (1), 171. doi: 10.1016/j.cej.2010.05.024

    7. [7]

      (7) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys.-Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123

    8. [8]

      (8) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012, 28 (9), 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012, 28 (9), 2214.] doi: 10.3866/PKU.WHXB201206122

    9. [9]

      (9) Zhang, N.; Zhang, Y. H.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k

    10. [10]

      (10) Zhang, N.; Liu, S. Q.; Xu, Y. J. Nanoscale 2012, 4, 2227. doi: 10.1039/c2nr00009a

    11. [11]

      (11) Yang, M. Q.; Xu, Y. J. Phys. Chem. Chem. Phys. 2013, 15, 19102. doi: 10.1039/c3cp53325e

    12. [12]

      (12) Yang, M. Q.;Weng, B.; Xu, Y. J. J. Mater. Chem. A 2014, 2, 1710. doi: 10.1039/c3ta14370h

    13. [13]

      (13) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.;Withers, R. L. Nat. Mater. 2010, 9 (7), 559. doi:1 0.1038/nmat2780

    14. [14]

      (14) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317

    15. [15]

      (15) Asahi, R.; Morikiwa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051

    16. [16]

      (16) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121 (49), 11459. doi: 10.1021/ja992541y

    17. [17]

      (17) Wang, Y. F.; Li, X. L.;Wang, Y.W.; Fan, C. M. J. Solid State Chem. 2013, 202, 51. doi: 10.1016/j.jssc.2013.03.013

    18. [18]

      (18) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b

    19. [19]

      (19) Yao,W. F.; Zhang, B.; Huang, C. P.; Ma, C.; Song, X. L.; Xu, Q. J. J. Mater. Chem. 2012, 22, 4050. doi: 10.1039/c2jm14410g

    20. [20]

      (20) Shen, K.; ndal, M. A.; Siddique, R. G.; Shi, S.;Wang, S. Q.; Sun, J. B.; Xu, Q. Y. Chin. J. Catal. 2014, 35 (1), 78. doi: 10.1016/S1872-2067(12)60712-8

    21. [21]

      (21) Zhang, L. L.; Zhang, H. C.; Huang, H.; Yang, L.; Kang, Z. H. New J. Chem. 2012, 36 (8), 1541. doi: 10.1039/c2nj40206h

    22. [22]

      (22) Wang, H.; Bai, Y. S.; Yang, J. T.; Lang, X. F.; Li, J. H.; Guo, L. Chem. Eur. J. 2012, 18 (18), 5524. doi: 10.1002/chem.v18.18

    23. [23]

      (23) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27), 4467.

    24. [24]

      (24) Shahbaz, M.; Urano, S.; LeBreton, P. R.; Rossman, M. A.; Hosmane, R. S.; Leonard, N. J. J. Am. Chem. Soc. 1984, 106 (10), 2805. doi: 10.1021/ja00322a014

    25. [25]

      (25) Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Mater. Chem. Phys. 2004, 86 (1), 123. doi: 10.1016/j.matchemphys.2004.02.023

    26. [26]

      (26) Hu, C.; Lan, Y. Q.; Qu, J. H.; Hu, X. X.;Wang, A. M. J. Phys. Chem. B 2006, 110 (9), 4066. doi: 10.1021/jp0564400

    27. [27]

      (27) Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. Surf. Sci. 2005, 588 (1-3), 6.

    28. [28]

      (28) Ng, H. N.; Calvo, C.; Faggiani, R. Acta Cryst. B 1978, 34 (3), 898. doi: 10.1107/S0567740878014570

    29. [29]

      (29) Cao, J.; Luo, B. D.; Lin, H. L.; Xu, B. Y.; Chen, S. F. J. Hazard. Mater. 2012, 217 -218, 107.

    30. [30]

      (30) Khan, A.; Qamar, M.; Muneer, M. Chem. Phys. Lett. 2012, 519 -520, 54.

    31. [31]

      (31) Zhang, F. J.; Xie, F. Z.; Zhu, S. F.; Liu, J.; Zhang, J.; Mei, S. F.; Zhao,W. Chem. Eng. J. 2013, 228, 435. doi: 10.1016/j.cej.2013.05.027

    32. [32]

      (32) Liu, J. J.; Fu, X. L.; Chen, S. F.; Zhu, Y. F. Appl. Phys. Lett. 2011, 99 (19), 191903/1. doi: 10.1063/1.3660319

    33. [33]

      (33) Chen, L. C.; Chen, C. K.;Wei, S. L.; Bhusari, D. M.; Chen, K. H.; Chen, Y. F.; Jong, Y. C.; Huang, Y. S. Appl. Phys. Lett. 1998, 72 (19), 2463. doi: 10.1063/1.121383

    34. [34]

      (34) Zhang, Q. H.; Gao, L.; Guo, J. K. Appl. Catal. B 2000, 26 (3), 207. doi: 10.1016/S0926-3373(00)00122-3

    35. [35]

      (35) Liu, Y. P.; Fang, L.; Lu, H. D.; Liu, L. J.;Wang, H.; Hu, C. Z. Catal. Commun. 2012, 17, 200. doi: 10.1016/j.catcom.2011.11.001

    36. [36]

      (36) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133 (17), 6490. doi: 10.1021/ja2002132

    37. [37]

      (37) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. Z. J. Phys. Chem. C 2011, 115 (18), 9136. doi: 10.1021/jp2009989

    38. [38]

      (38) Li, G. T.;Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.;Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027

    39. [39]

      (39) Li, Y. Y.;Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. J. Mol. Catal. A: Chem. 2011, 334 (1-2), 116.

    40. [40]

      (40) Kumar, S.; Surendar, T.; Baruahb, A.; Shanker, V. J. Mater. Chem. A 2013, 1, 5333. doi: 10.1039/c3ta00186e

    41. [41]

      (41) Oliveira, H. G.; Nery, D. C.; Lon , C. Appl. Catal. B 2010, 93 (3-4), 205.

    42. [42]

      (42) Sobczy ski, A.; Duczmal, .; Zmudzi ski,W. J. Mol. Catal. AChem. 2004, 213 (2), 225. doi: 10.1016/j.molcata.2003.12.006

    43. [43]

      (43) Peiró, A. M.; Ayllón, J. A.; Peral, J.; Doménech, X. Appl. Catal. B 2001, 30 (3-4), 359.

    44. [44]

      (44) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27) 4467.

    45. [45]

      (45) Liu, Y. F.; Zhu, Y. Y.; Xu, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2013, 142 -143, 561.

    46. [46]

      (46) Ma,W.; Cheng, Z. H.; Gao, Z. X.;Wang, R.;Wang, B. D.; Sun, Q. Chem. Eng. J. 2014, 241, 167. doi: 10.1016/j.cej.2013.12.031

    47. [47]

      (47) Lin, H. L.; Cao, J.; Luo, B. D.; Xu, B. Y.; Chen, S. F. Catal. Commun. 2012, 21, 91. doi: 10.1016/j.catcom.2012.02.008


  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(862)
  • Abstract views(1043)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return